Reaction participants Show >> << Hide
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,186 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline nitrite Identifier CHEBI:16301 (CAS: 14797-65-0) help_outline Charge -1 Formula NO2 InChIKeyhelp_outline IOVCWXUNBOPUCH-UHFFFAOYSA-M SMILEShelp_outline [O-]N=O 2D coordinates Mol file for the small molecule Search links Involved in 79 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,116 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline nitrate Identifier CHEBI:17632 (Beilstein: 3587575; CAS: 14797-55-8) help_outline Charge -1 Formula NO3 InChIKeyhelp_outline NHNBFGGVMKEFGY-UHFFFAOYSA-N SMILEShelp_outline [O-][N+]([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 26 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:17913 | RHEA:17914 | RHEA:17915 | RHEA:17916 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Kinetic mechanism of assimilatory NADH:nitrate reductase from Chlorella.
Howard W.D., Solomonson L.P.
Chlorella nitrate reductase catalyzes the reduction of nitrate to nitrite by NADH. Initial velocity studies showed that the kinetic mechanism is sequential, indicating that both substrates must bind to the enzyme before any products are released. Product inhibition with NAD and nitrite showed that ... >> More
Chlorella nitrate reductase catalyzes the reduction of nitrate to nitrite by NADH. Initial velocity studies showed that the kinetic mechanism is sequential, indicating that both substrates must bind to the enzyme before any products are released. Product inhibition with NAD and nitrite showed that competitive inhibition was observed when the inhibitor was similar to the varied substrate, while noncompetitive inhibition was observed when the inhibitor was dissimilar to the varied substrate. Likewise, dead-end inhibition with adenosine 5'-diphosphoribose and thiocyanate showed competitive inhibition when the inhibitor was similar to the varied substrate and noncompetitive inhibition when the inhibitor was dissimilar to the varied substrate. These results indicate that Chlorella nitrate reductase follows a random bi bi kinetic mechanism. Phosphate was found to stimulate NADH:nitrate reductase activity and 2-fold. The NADH:cytochrome c reductase activity associated with nitrate reductase was not affected by phosphate suggesting the effect of phosphate is on the nitrate-reducing moiety of the enzyme. Phosphate increases Vmax but has no effect on the apparent Km for nitrate. << Less
-
Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions.
Berks B.C., Ferguson S.J., Moir J.W., Richardson D.J.
Biochim Biophys Acta 1232:97-173(1995) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.
-
Purification and Kinetics of Higher Plant NADH:Nitrate Reductase.
Campbell W.H., Smarrelli J.
Squash cotyledon (Cucurbita pepo L.) NADH:nitrate reductase (NR) was purified 150-fold with 50% recovery by a single step procedure based on the affinity of the NR for blue-Sepharose. Blue-Sepharose, which is prepared by direct coupling of Cibacron blue to Sepharose, appears to bind squash NR at t ... >> More
Squash cotyledon (Cucurbita pepo L.) NADH:nitrate reductase (NR) was purified 150-fold with 50% recovery by a single step procedure based on the affinity of the NR for blue-Sepharose. Blue-Sepharose, which is prepared by direct coupling of Cibacron blue to Sepharose, appears to bind squash NR at the NADH site. The NR can be purified in 2 to 3 hours to a specific activity of 2 mumol of NADH oxidized/minute * milligram of protein. Corn (Zea mays L.) leaf NR was also purified to a specific activity of 6.9 mumol of NADH oxidized/minute * milligram of protein using a blue-Sepharose affinity step. The blue-Sepharose method offers the advantages of a rapid purification of plant NR to a high specific activity with reasonable recovery of total activity.The kinetic mechanism of higher plant NR was investigated using these highly purified squash and corn NR preparations. Based on initial velocity and product inhibition studies utilizing both enzymes, a two-site ping-pong mechanism is proposed for NR. This kinetic mechanism incorporates the concept of the reduced NR transferring electrons from the NADH site to a physically separated nitrate site. << Less
-
Pre-steady-state kinetic analysis of recombinant Arabidopsis NADH:nitrate reductase: rate-limiting processes in catalysis.
Skipper L., Campbell W.H., Mertens J.A., Lowe D.J.
Recombinant Arabidopsis NADH:nitrate reductase was expressed in Pichia pastoris using fermentation. Large enzyme quantities were purified for pre-steady-state kinetic analysis, which had not been done before with any eukaryotic nitrate reductase. Basic biochemical properties of recombinant nitrate ... >> More
Recombinant Arabidopsis NADH:nitrate reductase was expressed in Pichia pastoris using fermentation. Large enzyme quantities were purified for pre-steady-state kinetic analysis, which had not been done before with any eukaryotic nitrate reductase. Basic biochemical properties of recombinant nitrate reductase were similar to natural enzyme forms. Molybdenum content was lower than expected, which was compensated for by activity calculation on molybdenum basis. Stopped-flow rapid-scan spectrophotometry showed that the enzyme FAD and heme were rapidly reduced by NADH with and without nitrate present. NADPH reduced FAD at less than one-tenth of NADH rate. Reaction of NADH-reduced enzyme with nitrate yielded rapid initial oxidation of heme with slower oxidation of flavin. Rapid-reaction freeze-quench EPR spectra revealed molybdenum was maintained in a partially reduced state during turnover. Rapid-reaction chemical quench for quantifying nitrite production showed that the rate of nitrate reduction was initially greater than the steady-state rate, but rapidly decreased to near steady-state turnover rate. However, rates of internal electron transfer and nitrate reduction were similar in magnitude with no one step in the catalytic process appearing to be much slower than the others. This leads to the conclusion that the catalytic rate is determined by a combination of rates with no overall rate-limiting individual process. << Less
-
Structure and function of eukaryotic NAD(P)H:nitrate reductase.
Campbell W.H.
Pyridine nucleotide-dependent nitrate reductases (NRs; EC 1.6.6.1-3) are molybdenum-containing enzymes found in eukaryotic organisms which assimilate nitrate. NR is a homodimer with an approximately 100 kDa polypeptide which folds into stable domains housing each of the enzyme's redox cofactors--F ... >> More
Pyridine nucleotide-dependent nitrate reductases (NRs; EC 1.6.6.1-3) are molybdenum-containing enzymes found in eukaryotic organisms which assimilate nitrate. NR is a homodimer with an approximately 100 kDa polypeptide which folds into stable domains housing each of the enzyme's redox cofactors--FAD, heme-Fe molybdopterin (Mo-MPT) and the electron donor NAD(P)H--and there is also a domain for the dimer interface. NR has two active sites: the nitrate-reducing Mo-containing active site and the pyridine nucleotide active site formed between the FAD and NAD(P)H domains. The major barriers to defining the mechanism of catalysis for NR are obtaining the detailed three-dimensional structures for oxidized and reduced enzyme and more in-depth analysis of electron transfer rates in holo-NR. Recombinant expression of holo-NR and its fragments, including site-directed mutagenesis of key acative site and domain interface residues, are expected to make large contributions to this effort to understand the catalytic mechanism of NR. << Less
Cell Mol Life Sci 58:194-204(2001) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Differential expression of the arabidopsis nia1 and nia2 genes. cytokinin-induced nitrate reductase activity is correlated with increased nia1 transcription and mrna levels.
Yu X., Sukumaran S., Mrton L.
Nitrate reductase (NR) activity increased up to 14-fold in response to treatment of Arabidopsis thaliana seedlings with the cytokinin benzyladenine. NR induction was observed in seedlings germinated directly on cytokinin-containing medium, seedlings transferred to cytokinin medium, and seedlings g ... >> More
Nitrate reductase (NR) activity increased up to 14-fold in response to treatment of Arabidopsis thaliana seedlings with the cytokinin benzyladenine. NR induction was observed in seedlings germinated directly on cytokinin-containing medium, seedlings transferred to cytokinin medium, and seedlings grown in soil in which cytokinin was applied directly to the leaves. About the same level of induction was seen in both wild-type and Nia2-deletion mutants, indicating that increased NR activity is related to the expression of the minor NR gene, Nia1. The steady-state Nia1 mRNA level was increased severalfold in both wild-type and mutant seedlings after benzyladenine treatment. Transcript levels of the Nia2 gene, which is responsible for 90% of the NR activity in developing wild-type seedlings, did not show any changes upon cytokinin treatment. Nuclear run-on assays demonstrated that Nia1 gene transcription increased dramatically after cytokinin treatment. << Less