Reaction participants Show >> << Hide
- Name help_outline A Identifier CHEBI:13193 Charge Formula R SMILEShelp_outline * 2D coordinates Mol file for the small molecule Search links Involved in 2,870 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ethylbenzene Identifier CHEBI:16101 (Beilstein: 1901871; CAS: 100-41-4) help_outline Charge 0 Formula C8H10 InChIKeyhelp_outline YNQLUTRBYVCPMQ-UHFFFAOYSA-N SMILEShelp_outline CCc1ccccc1 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (S)-1-phenylethanol Identifier CHEBI:16346 (Beilstein: 2039797; CAS: 1445-91-6) help_outline Charge 0 Formula C8H10O InChIKeyhelp_outline WAPNOHKVXSQRPX-ZETCQYMHSA-N SMILEShelp_outline C[C@H](O)c1ccccc1 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline AH2 Identifier CHEBI:17499 Charge 0 Formula RH2 SMILEShelp_outline *([H])[H] 2D coordinates Mol file for the small molecule Search links Involved in 2,799 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:17897 | RHEA:17898 | RHEA:17899 | RHEA:17900 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Ethylbenzene dehydrogenase, a novel hydrocarbon-oxidizing molybdenum/iron-sulfur/heme enzyme.
Kniemeyer O., Heider J.
The initial enzyme of ethylbenzene metabolism in denitrifying Azoarcus strain EbN1, ethylbenzene dehydrogenase, was purified and characterized. The soluble periplasmic enzyme is the first known enzyme oxidizing a nonactivated hydrocarbon without molecular oxygen as cosubstrate. It is a novel molyb ... >> More
The initial enzyme of ethylbenzene metabolism in denitrifying Azoarcus strain EbN1, ethylbenzene dehydrogenase, was purified and characterized. The soluble periplasmic enzyme is the first known enzyme oxidizing a nonactivated hydrocarbon without molecular oxygen as cosubstrate. It is a novel molybdenum/iron-sulfur/heme protein of 155 kDa, which consists of three subunits (96, 43, and 23 kDa) in an alphabetagamma structure. The N-terminal amino acid sequence of the alpha subunit is similar to that of other molybdenum proteins such as selenate reductase from the related species Thauera selenatis. Ethylbenzene dehydrogenase is unique in that it oxidizes the hydrocarbon ethylbenzene, a compound without functional groups, to (S)-1-phenylethanol. Formation of the product was evident by coupling to an enantiomer-specific (S)-1-phenylethanol dehydrogenase from the same organism. The apparent K(m) of the enzyme for ethylbenzene is very low at <2 microm. Oxygen does not affect ethylbenzene dehydrogenase activity in extracts but inactivates the purified enzyme, if the heme b cofactor is in the reduced state. A variant of ethylbenzene dehydrogenase exhibiting significant activity also with the homolog n-propylbenzene was detected in a related Azoarcus strain (PbN1). << Less
-
Isolation and characterization of anaerobic ethylbenzene dehydrogenase, a novel Mo-Fe-S enzyme.
Johnson H.A., Pelletier D.A., Spormann A.M.
The first step in anaerobic ethylbenzene mineralization in denitrifying Azoarcus sp. strain EB1 is the oxidation of ethylbenzene to (S)-(-)-1-phenylethanol. Ethylbenzene dehydrogenase, which catalyzes this reaction, is a unique enzyme in that it mediates the stereoselective hydroxylation of an aro ... >> More
The first step in anaerobic ethylbenzene mineralization in denitrifying Azoarcus sp. strain EB1 is the oxidation of ethylbenzene to (S)-(-)-1-phenylethanol. Ethylbenzene dehydrogenase, which catalyzes this reaction, is a unique enzyme in that it mediates the stereoselective hydroxylation of an aromatic hydrocarbon in the absence of molecular oxygen. We purified ethylbenzene dehydrogenase to apparent homogeneity and showed that the enzyme is a heterotrimer (alphabetagamma) with subunit masses of 100 kDa (alpha), 35 kDa (beta), and 25 kDa (gamma). Purified ethylbenzene dehydrogenase contains approximately 0.5 mol of molybdenum, 16 mol of iron, and 15 mol of acid-labile sulfur per mol of holoenzyme, as well as a molydopterin cofactor. In addition to ethylbenzene, purified ethylbenzene dehydrogenase was found to oxidize 4-fluoro-ethylbenzene and the nonaromatic hydrocarbons 3-methyl-2-pentene and ethylidenecyclohexane. Sequencing of the encoding genes revealed that ebdA encodes the alpha subunit, a 974-amino-acid polypeptide containing a molybdopterin-binding domain. The ebdB gene encodes the beta subunit, a 352-amino-acid polypeptide with several 4Fe-4S binding domains. The ebdC gene encodes the gamma subunit, a 214-amino-acid polypeptide that is a potential membrane anchor subunit. Sequence analysis and biochemical data suggest that ethylbenzene dehydrogenase is a novel member of the dimethyl sulfoxide reductase family of molybdopterin-containing enzymes. << Less