Enzymes
UniProtKB help_outline | 1,564 proteins |
Reaction participants Show >> << Hide
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,280 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-cysteine Identifier CHEBI:35235 Charge 0 Formula C3H7NO2S InChIKeyhelp_outline XUJNEKJLAYXESH-REOHCLBHSA-N SMILEShelp_outline [NH3+][C@@H](CS)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 61 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
tRNACys
Identifier
RHEA-COMP:9661
Reactive part
help_outline
- Name help_outline AMP 3'-end residue Identifier CHEBI:78442 Charge -1 Formula C10H12N5O6P SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(-*)=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 76 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline AMP Identifier CHEBI:456215 Charge -2 Formula C10H12N5O7P InChIKeyhelp_outline UDMBCSSLTHHNCD-KQYNXXCUSA-L SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 508 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline diphosphate Identifier CHEBI:33019 (Beilstein: 185088) help_outline Charge -3 Formula HO7P2 InChIKeyhelp_outline XPPKVPWEQAFLFU-UHFFFAOYSA-K SMILEShelp_outline OP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,129 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
L-cysteinyl-tRNACys
Identifier
RHEA-COMP:9679
Reactive part
help_outline
- Name help_outline 3'-(L-cysteinyl)adenylyl group Identifier CHEBI:78517 Charge 0 Formula C13H18N6O7PS SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(-*)=O)[C@@H](OC(=O)[C@@H]([NH3+])CS)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:17773 | RHEA:17774 | RHEA:17775 | RHEA:17776 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
THE SEPARATION AND PARTIAL PURIFICATION OF AMINOACYL-RNA SYNTHETASES FROM ESCHERICHIA COLI.
MCCORQUODALE D.J.
-
Mutational analysis of a leucine heptad repeat motif in a class I aminoacyl-tRNA synthetase.
Ohannesian D.W., Oh J., Hou Y.M.
Aminoacyl-tRNA synthetases activate amino acids with ATP to form aminoacyl adenylates as the essential intermediates for aminoacylation of their cognate tRNAs. The class I Escherichia coli cysteine tRNA synthetase contains an N-terminal nucleotide binding fold that provides the catalytic site of a ... >> More
Aminoacyl-tRNA synthetases activate amino acids with ATP to form aminoacyl adenylates as the essential intermediates for aminoacylation of their cognate tRNAs. The class I Escherichia coli cysteine tRNA synthetase contains an N-terminal nucleotide binding fold that provides the catalytic site of adenylate synthesis. The C-terminal domain of the cysteine enzyme is predominantly alpha-helical and contains a leucine heptad repeat motif. We show here that specific substitutions of leucines in the leucine heptad repeats reduced tRNA aminoacylation. In particular, substitution of Leu316 with phenylalanine reduced the catalytic efficiency of aminoacylation by 1000-fold. This deleterious effect was partially alleviated by a more conservative substitution of leucine with valine. Filter binding assays show that neither the phenylalanine nor the valine substitution at Leu316 had a major effect on the ability of the cysteine enzyme to bind tRNA(Cys). In contrast, pyrophosphate exchange assays show that both substitutions decreased the adenylate synthesis activity of the enzyme. Analysis of these results suggests that the primary defect of the valine substitution is executed at adenylate synthesis while that of the phenylalanine substitution is at both adenylate synthesis and the transition state of tRNA aminoacylation. Thus, although Leu316 is located in the C-terminal domain of the cysteine enzyme, it may modulate the capacity of the N-terminal domain for amino acid activation and tRNA aminoacylation through a domain-domain interaction. << Less
-
Influence of transfer RNA tertiary structure on aminoacylation efficiency by glutaminyl and cysteinyl-tRNA synthetases.
Sherlin L.D., Bullock T.L., Newberry K.J., Lipman R.S., Hou Y.M., Beijer B., Sproat B.S., Perona J.J.
The position of the tertiary Levitt pair between nucleotides 15 and 48 in the transfer RNA core region suggests a key role in stabilizing the joining of the two helical domains, and in maintaining the relative orientations of the D and variable loops. E. coli tRNA(Gln) possesses the canonical Pu15 ... >> More
The position of the tertiary Levitt pair between nucleotides 15 and 48 in the transfer RNA core region suggests a key role in stabilizing the joining of the two helical domains, and in maintaining the relative orientations of the D and variable loops. E. coli tRNA(Gln) possesses the canonical Pu15-Py48 trans pairing at this position (G15-C48), while the tRNA(Cys) species from this organism instead features an unusual G15-G48 pair. To explore the structural context dependence of a G15-G48 Levitt pair, a number of tRNA(Gln) species containing G15-G48 were constructed and evaluated as substrates for glutaminyl and cysteinyl-tRNA synthetases. The glutaminylation efficiencies of these mutant tRNAs are reduced by two to tenfold compared with native tRNA(Gln), consistent with previous findings that the tertiary core of this tRNA plays a role in GlnRS recognition. Introduction of tRNA(Cys) identity nucleotides at the acceptor and anticodon ends of tRNA(Gln) produced a tRNA substrate which was efficiently aminoacylated by CysRS, even though the tertiary core region of this species contains the tRNA(Gln) G15-C48 pair. Surprisingly, introduction of G15-G48 into the non-cognate tRNA(Gln) tertiary core then significantly impairs CysRS recognition. By contrast, previous work has shown that CysRS aminoacylates tRNA(Cys) core regions containing G15-G48 with much better efficiency than those with G15-C48. Therefore, tertiary nucleotides surrounding the Levitt pair must significantly modulate the efficiency of aminoacylation by CysRS. To explore the detailed nature of the structural interdependence, crystal structures of two tRNA(Gln) mutants containing G15-G48 were determined bound to GlnRS. These structures show that the larger purine ring of G48 is accommodated by rotation into the syn position, with the N7 nitrogen serving as hydrogen bond acceptor from several groups of G15. The G15-G48 conformations differ significantly compared to that observed in the native tRNA(Cys) structure bound to EF-Tu, further implicating an important role for surrounding nucleotides in maintaining the integrity of the tertiary core and its consequent ability to present crucial recognition determinants to aminoacyl-tRNA synthetases. << Less
-
Shape-selective RNA recognition by cysteinyl-tRNA synthetase.
Hauenstein S., Zhang C.M., Hou Y.M., Perona J.J.
The crystal structure of Escherichia coli cysteinyl-tRNA synthetase (CysRS) bound to tRNA(Cys) at a resolution of 2.3 A reveals base-specific and shape-selective interactions across an extensive protein-RNA recognition interface. The complex contains a mixed alpha/beta C-terminal domain, which is ... >> More
The crystal structure of Escherichia coli cysteinyl-tRNA synthetase (CysRS) bound to tRNA(Cys) at a resolution of 2.3 A reveals base-specific and shape-selective interactions across an extensive protein-RNA recognition interface. The complex contains a mixed alpha/beta C-terminal domain, which is disordered in the unliganded enzyme. This domain makes specific hydrogen bonding interactions with all three bases of the GCA anticodon. The tRNA anticodon stem is bent sharply toward the enzyme as compared with its conformation when bound to elongation factor Tu, providing an essential basis for shape-selective recognition. The CysRS structure also reveals interactions of conserved enzyme groups with the sugar-phosphate backbone in the D loop, adjacent to an unusual G15.G48 tertiary base pair previously implicated in tRNA aminoacylation. A combined mutational analysis of enzyme and tRNA groups at G15.G48 supports the notion that contacts between CysRS and the sugar-phosphate backbone contribute to recognition by indirect readout. << Less
Nat. Struct. Mol. Biol. 11:1134-1141(2004) [PubMed] [EuropePMC]
-
Aminoacyl-tRNA synthesis.
Ibba M., Soll D.
Aminoacyl-tRNAs are substrates for translation and are pivotal in determining how the genetic code is interpreted as amino acids. The function of aminoacyl-tRNA synthesis is to precisely match amino acids with tRNAs containing the corresponding anticodon. This is primarily achieved by the direct a ... >> More
Aminoacyl-tRNAs are substrates for translation and are pivotal in determining how the genetic code is interpreted as amino acids. The function of aminoacyl-tRNA synthesis is to precisely match amino acids with tRNAs containing the corresponding anticodon. This is primarily achieved by the direct attachment of an amino acid to the corresponding tRNA by an aminoacyl-tRNA synthetase, although intrinsic proofreading and extrinsic editing are also essential in several cases. Recent studies of aminoacyl-tRNA synthesis, mainly prompted by the advent of whole genome sequencing and the availability of a vast body of structural data, have led to an expanded and more detailed picture of how aminoacyl-tRNAs are synthesized. This article reviews current knowledge of the biochemical, structural, and evolutionary facets of aminoacyl-tRNA synthesis. << Less
Annu Rev Biochem 69:617-650(2000) [PubMed] [EuropePMC]
This publication is cited by 26 other entries.