Reaction participants Show >> << Hide
- Name help_outline S-(5-deoxy-D-ribos-5-yl)-L-homocysteine Identifier CHEBI:58195 Charge 0 Formula C9H17NO6S InChIKeyhelp_outline IQFWYNFDWRYSRA-BLELIYKESA-N SMILEShelp_outline [NH3+][C@@H](CCSC[C@H]1OC(O)[C@H](O)[C@@H]1O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (S)-4,5-dihydroxypentane-2,3-dione Identifier CHEBI:29484 Charge 0 Formula C5H8O4 InChIKeyhelp_outline UYTRITJAZOPLCZ-BYPYZUCNSA-N SMILEShelp_outline CC(=O)C(=O)[C@@H](O)CO 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-homocysteine Identifier CHEBI:58199 Charge 0 Formula C4H9NO2S InChIKeyhelp_outline FFFHZYDWPBMWHY-VKHMYHEASA-N SMILEShelp_outline [NH3+][C@@H](CCS)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 20 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:17753 | RHEA:17754 | RHEA:17755 | RHEA:17756 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
S-ribosylhomocysteinase (LuxS) is a mononuclear iron protein.
Zhu J., Dizin E., Hu X., Wavreille A.-S., Park J., Pei D.
S-Ribosylhomocysteinase (LuxS) catalyzes the cleavage of the thioether linkage of S-ribosylhomocysteine (SRH) to produce L-homocysteine and 4,5-dihydroxy-2,3-pentanedione (DHPD). This is a key step in the biosynthetic pathway of the type II autoinducer (AI-2) in both Gram-positive and Gram-negativ ... >> More
S-Ribosylhomocysteinase (LuxS) catalyzes the cleavage of the thioether linkage of S-ribosylhomocysteine (SRH) to produce L-homocysteine and 4,5-dihydroxy-2,3-pentanedione (DHPD). This is a key step in the biosynthetic pathway of the type II autoinducer (AI-2) in both Gram-positive and Gram-negative bacteria. Previous studies demonstrated that LuxS contains a divalent metal cofactor, which has been proposed to be a Zn(2+) ion. To gain insight into the catalytic mechanism of this unusual reaction and the function of the metal cofactor, we developed an efficient expression and purification system to produce LuxS enriched in either Fe(2+), Co(2+), or Zn(2+). Comparison of the catalytic properties and stability of the metal-substituted LuxS with those of the native enzyme revealed that the native metal ion is Fe(2+). The electronic absorption spectrum of the Co(II)-substituted LuxS underwent dramatic catalysis-dependent changes, suggesting the direct involvement of the metal ion in catalysis. Site-directed mutagenesis studies showed that Glu-57 and Cys-84 are essential for catalysis, most likely acting as general acids/bases. Reaction in D(2)O resulted in the incorporation of deuterium at the C-1, C-2, and C-5 positions of the diketone product. These data suggest a catalytic mechanism in which the metal ion catalyzes an intramolecular redox reaction, shifting the carbonyl group from the C-1 position to the C-3 position of the ribose. Subsequent beta-elimination at the C-4 and C-5 positions releases homocysteine as a free thiol. << Less
-
Quorum sensing in bacteria.
Miller M.B., Bassler B.L.
Quorum sensing is the regulation of gene expression in response to fluctuations in cell-population density. Quorum sensing bacteria produce and release chemical signal molecules called autoinducers that increase in concentration as a function of cell density. The detection of a minimal threshold s ... >> More
Quorum sensing is the regulation of gene expression in response to fluctuations in cell-population density. Quorum sensing bacteria produce and release chemical signal molecules called autoinducers that increase in concentration as a function of cell density. The detection of a minimal threshold stimulatory concentration of an autoinducer leads to an alteration in gene expression. Gram-positive and Gram-negative bacteria use quorum sensing communication circuits to regulate a diverse array of physiological activities. These processes include symbiosis, virulence, competence, conjugation, antibiotic production, motility, sporulation, and biofilm formation. In general, Gram-negative bacteria use acylated homoserine lactones as autoinducers, and Gram-positive bacteria use processed oligo-peptides to communicate. Recent advances in the field indicate that cell-cell communication via autoinducers occurs both within and between bacterial species. Furthermore, there is mounting data suggesting that bacterial autoinducers elicit specific responses from host organisms. Although the nature of the chemical signals, the signal relay mechanisms, and the target genes controlled by bacterial quorum sensing systems differ, in every case the ability to communicate with one another allows bacteria to coordinate the gene expression, and therefore the behavior, of the entire community. Presumably, this process bestows upon bacteria some of the qualities of higher organisms. The evolution of quorum sensing systems in bacteria could, therefore, have been one of the early steps in the development of multicellularity. << Less