Reaction participants Show >> << Hide
- Name help_outline an acyl-CoA Identifier CHEBI:58342 Charge -4 Formula C22H31N7O17P3SR SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCSC([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 2,045 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline cholesterol Identifier CHEBI:16113 (Beilstein: 2060565; CAS: 57-88-5) help_outline Charge 0 Formula C27H46O InChIKeyhelp_outline HVYWMOMLDIMFJA-DPAQBDIFSA-N SMILEShelp_outline C1[C@@]2([C@]3(CC[C@]4([C@]([C@@]3(CC=C2C[C@H](C1)O)[H])(CC[C@@]4([C@H](C)CCCC(C)C)[H])[H])C)[H])C 2D coordinates Mol file for the small molecule Search links Involved in 63 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a cholesterol ester Identifier CHEBI:17002 Charge 0 Formula C28H45O2R SMILEShelp_outline [H][C@@]1(CC[C@@]2([H])[C@]3([H])CC=C4C[C@H](CC[C@]4(C)[C@@]3([H])CC[C@]12C)OC([*])=O)[C@H](C)CCCC(C)C 2D coordinates Mol file for the small molecule Search links Involved in 27 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,500 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:17729 | RHEA:17730 | RHEA:17731 | RHEA:17732 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
Reactome help_outline |
Related reactions help_outline
Specific form(s) of this reaction
- RHEA:64330
- RHEA:64326
- RHEA:64322
- RHEA:46622
- RHEA:46614
- RHEA:42818
- RHEA:42814
- RHEA:42798
- RHEA:42794
- RHEA:41438
Publications
-
Functionality of the seventh and eighth transmembrane domains of acyl-coenzyme A:cholesterol acyltransferase 1.
Guo Z.Y., Chang C.C., Chang T.Y.
Acyl-coenzyme A:cholesterol acyltransferase 1 (ACAT1) is a resident enzyme in the endoplasmic reticulum. ACAT1 is a homotetrameric protein and contains nine transmembrane domains (TMDs). His460 is a key active residue and is located within TMD7. Human ACAT1 has seven free Cys, but the recombinant ... >> More
Acyl-coenzyme A:cholesterol acyltransferase 1 (ACAT1) is a resident enzyme in the endoplasmic reticulum. ACAT1 is a homotetrameric protein and contains nine transmembrane domains (TMDs). His460 is a key active residue and is located within TMD7. Human ACAT1 has seven free Cys, but the recombinant ACAT1 devoid of free Cys retains full enzyme activity. To further probe the functionality of TMD7 (amino acids 446-460) and TMD8 (amino acids 466-481), we used a parental ACAT1 devoid of free Cys as the template to perform Cys-scanning mutagenesis within these regions. Each of the single Cys mutants was expressed in Chinese hamster ovary (CHO) cell line AC29 lacking endogenous ACAT1. We measured the effect of single Cys substitution on enzyme activity and used the Cu(1,10-phenanthroline)2SO4-mediated disulfide cross-linking method to probe possible interactions of engineered Cys between the two identical subunits. The results show that several residues in one subunit closely interact with the same residues in the other subunit; mutating these residues to Cys does not lead to large loss in enzyme activity. Helical wheel analysis suggests that these residues are located at one side of the coil. In contrast, mutating residues F453, A457, or H460 to Cys causes large loss in enzyme activity; the latter residues are located at the opposite side of the coil. A similar arrangement is found for residues in TMD8. Thus, helical coils in TMD7 and TMD8 have two distinct functional sides: one side is involved in substrate-binding/catalysis, while the other side is involved in subunit interaction. << Less
-
Structural basis for catalysis and substrate specificity of human ACAT1.
Qian H., Zhao X., Yan R., Yao X., Gao S., Sun X., Du X., Yang H., Wong C.C.L., Yan N.
As members of the membrane-bound O-acyltransferase (MBOAT) enzyme family, acyl-coenzyme A:cholesterol acyltransferases (ACATs) catalyse the transfer of an acyl group from acyl-coenzyme A to cholesterol to generate cholesteryl ester, the primary form in which cholesterol is stored in cells and tran ... >> More
As members of the membrane-bound O-acyltransferase (MBOAT) enzyme family, acyl-coenzyme A:cholesterol acyltransferases (ACATs) catalyse the transfer of an acyl group from acyl-coenzyme A to cholesterol to generate cholesteryl ester, the primary form in which cholesterol is stored in cells and transported in plasma<sup>1</sup>. ACATs have gained attention as potential drug targets for the treatment of diseases such as atherosclerosis, Alzheimer's disease and cancer<sup>2-7</sup>. Here we present the cryo-electron microscopy structure of human ACAT1 as a dimer of dimers. Each protomer consists of nine transmembrane segments, which enclose a cytosolic tunnel and a transmembrane tunnel that converge at the predicted catalytic site. Evidence from structure-guided mutational analyses suggests that acyl-coenzyme A enters the active site through the cytosolic tunnel, whereas cholesterol may enter from the side through the transmembrane tunnel. This structural and biochemical characterization helps to rationalize the preference of ACAT1 for unsaturated acyl chains, and provides insight into the catalytic mechanism of enzymes within the MBOAT family<sup>8</sup>. << Less
Nature 581:333-338(2020) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
The active site His-460 of human acyl-coenzyme A:cholesterol acyltransferase 1 resides in a hitherto undisclosed transmembrane domain.
Guo Z.Y., Lin S., Heinen J.A., Chang C.C., Chang T.Y.
Human acyl-coenzyme A:cholesterol acyltransferase 1 (hACAT1) esterifies cholesterol at the endoplasmic reticulum (ER). We had previously reported that hACAT1 contains seven transmembrane domains (TMD) (Lin, S., Cheng, D., Liu, M. S., Chen, J., and Chang, T. Y. (1999) J. Biol. Chem. 274, 23276-2328 ... >> More
Human acyl-coenzyme A:cholesterol acyltransferase 1 (hACAT1) esterifies cholesterol at the endoplasmic reticulum (ER). We had previously reported that hACAT1 contains seven transmembrane domains (TMD) (Lin, S., Cheng, D., Liu, M. S., Chen, J., and Chang, T. Y. (1999) J. Biol. Chem. 274, 23276-23285) and nine cysteines. The Cys near the N-terminal is located at the cytoplasm; the two cysteines near the C-terminal form a disulfide bond and are located in the ER lumen. The other six free cysteines are located in buried region(s) of the enzyme (Guo, Z.-Y., Chang, C. C. Y., Lu, X., Chen, J., Li, B.-L., and Chang, T.-Y. (2005) Biochemistry 44, 6537-6548). In the current study, we show that the conserved His-460 is a key active site residue for hACAT1. We next performed Cys-scanning mutagenesis within the region of amino acids 354-493, expressed these mutants in Chinese hamster ovary cells lacking ACAT1, and prepared microsomes from transfected cells. The microsomes are either left intact or permeabilized with detergent. The accessibility of the engineered cysteines of microsomal hACAT1 to various maleimide derivatives, including mPEG(5000)-maleimide (large, hydrophilic, and membrane-impermeant), N-ethylmaleimide, 4-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid (small, hydrophilic, and ER membrane-permeant), and N-phenylmaleimide (small, hydrophobic, and ER membrane-permeant), were monitored by Western blot analysis. The results led us to construct a revised, nine-TMD model, with the active site His-460 located within a hitherto undisclosed transmembrane domain, between Arg-443 and Tyr-462. << Less
-
Acyl coenzyme A: cholesterol acyltransferase types 1 and 2: structure and function in atherosclerosis.
Rudel L.L., Lee R.G., Cockman T.L.
Two enzymes are responsible for cholesterol ester formation in tissues, acyl coenzyme A:cholesterol acyltransferase types 1 and 2 (ACAT1 and ACAT2). The available evidence suggests different cell locations, membrane orientations, and metabolic functions for each enzyme. ACAT1 and ACAT2 gene disrup ... >> More
Two enzymes are responsible for cholesterol ester formation in tissues, acyl coenzyme A:cholesterol acyltransferase types 1 and 2 (ACAT1 and ACAT2). The available evidence suggests different cell locations, membrane orientations, and metabolic functions for each enzyme. ACAT1 and ACAT2 gene disruption experiments in mice have shown complementary results, with ACAT1 being responsible for cholesterol homeostasis in the brain, skin, adrenal, and macrophages. ACAT1 -/-mice have less atherosclerosis than their ACAT1 +/+ counterparts, presumably because of the decreased ACAT activity in the macrophages. By contrast, ACAT2 -/-mice have limited cholesterol absorption in the intestine, and decreased cholesterol ester content in the liver and plasma lipoproteins. Almost no cholesterol esterification was found when liver and intestinal microsomes from ACAT2 -/-mice were assayed. Studies in non-human primates have shown the presence of ACAT1 primarily in the Kupffer cells of the liver, in non-mucosal cell types in the intestine, and in kidney and adrenal cortical cells, whereas ACAT2 is present only in hepatocytes and in intestinal mucosal cells. The membrane topology for ACAT1 and ACAT2 is also apparently different, with ACAT1 having a serine essential for activity on the cytoplasmic side of the endoplasmic reticulum membrane, whereas the analogous serine is present on the lumenal side of the endoplasmic reticulum for ACAT2. Taken together, the data suggest that cholesterol ester formation by ACAT1 supports separate functions compared with cholesterol esterification by ACAT2. The latter enzyme appears to be responsible for cholesterol ester formation and secretion in lipoproteins, whereas ACAT1 appears to function to maintain appropriate cholesterol availability in cell membranes. << Less