Reaction participants Show >> << Hide
- Name help_outline 3'-phosphoadenylyl sulfate Identifier CHEBI:58339 Charge -4 Formula C10H11N5O13P2S InChIKeyhelp_outline GACDQMDRPRGCTN-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OS([O-])(=O)=O)[C@@H](OP([O-])([O-])=O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 106 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline glycochenodeoxycholate Identifier CHEBI:36252 (Beilstein: 3730023) help_outline Charge -1 Formula C26H42NO5 InChIKeyhelp_outline GHCZAUBVMUEKKP-GYPHWSFCSA-M SMILEShelp_outline [H][C@@]12C[C@H](O)CC[C@]1(C)[C@@]1([H])CC[C@]3(C)[C@]([H])(CC[C@@]3([H])[C@]1([H])[C@H](O)C2)[C@H](C)CCC(=O)NCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 9 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline adenosine 3',5'-bisphosphate Identifier CHEBI:58343 Charge -4 Formula C10H11N5O10P2 InChIKeyhelp_outline WHTCPDAXWFLDIH-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])([O-])=O)[C@@H](OP([O-])([O-])=O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 140 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline glycochenodeoxycholate 7-sulfate Identifier CHEBI:58877 Charge -2 Formula C26H41NO8S InChIKeyhelp_outline GLYPHOJMMLQNJQ-GYPHWSFCSA-L SMILEShelp_outline [H][C@@]12C[C@H](O)CC[C@]1(C)[C@@]1([H])CC[C@]3(C)[C@]([H])(CC[C@@]3([H])[C@]1([H])[C@@H](C2)OS([O-])(=O)=O)[C@H](C)CCC(=O)NCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:17689 | RHEA:17690 | RHEA:17691 | RHEA:17692 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Enzymatic sulfation of glycochenodeoxycholic acid by tissue fractions from adult hamsters.
Barnes S., Burhol P.G., Zander R., Haggstrom G., Settine R.L., Hirschowitz B.I.
Using a radiometric assay with glycochenodeoxycholic acid as substrate, bile acid:3'-phosphoadenosine-5'-phosphosulfate sulfotransferase activity was found in 105,000 g supernatant fractions of liver, proximal intestine, and adrenal gland homogenates from adult hamsters. Optimum conditions for mea ... >> More
Using a radiometric assay with glycochenodeoxycholic acid as substrate, bile acid:3'-phosphoadenosine-5'-phosphosulfate sulfotransferase activity was found in 105,000 g supernatant fractions of liver, proximal intestine, and adrenal gland homogenates from adult hamsters. Optimum conditions for measurement of the hepatic enzyme were determined. In both male and female animals sulfation only occurred at the 7 alpha-position. Saturation analysis with glycohenodeoxycholic acid revealed that the higher activity observed in fractions from female compared to male hamsters was due to a 4-fold lower apparent Km (79 muM vs. 317 muM) for this bile acid in the females. The sulfation of glycohenodeoxycholic acid was competitively inhibited by glycolithocholic acid, chenodeoxycholic acid, and ursodeoxycholic acid. The data are consistent with the concept that sulfation of many, if not all, bile acids can occur in vivo. << Less
-
The enzymes, regulation, and genetics of bile acid synthesis.
Russell D.W.
The synthesis and excretion of bile acids comprise the major pathway of cholesterol catabolism in mammals. Synthesis provides a direct means of converting cholesterol, which is both hydrophobic and insoluble, into a water-soluble and readily excreted molecule, the bile acid. The biosynthetic steps ... >> More
The synthesis and excretion of bile acids comprise the major pathway of cholesterol catabolism in mammals. Synthesis provides a direct means of converting cholesterol, which is both hydrophobic and insoluble, into a water-soluble and readily excreted molecule, the bile acid. The biosynthetic steps that accomplish this transformation also confer detergent properties to the bile acid, which are exploited by the body to facilitate the secretion of cholesterol from the liver. This role in the elimination of cholesterol is counterbalanced by the ability of bile acids to solubilize dietary cholesterol and essential nutrients and to promote their delivery to the liver. The synthesis of a full complement of bile acids requires 17 enzymes. The expression of selected enzymes in the pathway is tightly regulated by nuclear hormone receptors and other transcription factors, which ensure a constant supply of bile acids in an ever changing metabolic environment. Inherited mutations that impair bile acid synthesis cause a spectrum of human disease; this ranges from liver failure in early childhood to progressive neuropathy in adults. << Less
Annu. Rev. Biochem. 72:137-174(2003) [PubMed] [EuropePMC]
This publication is cited by 13 other entries.
-
Identification and characterization of a novel PPARalpha-regulated and 7alpha-hydroxyl bile acid-preferring cytosolic sulfotransferase mL-STL (Sult2a8).
Feng L., Yuen Y.L., Xu J., Liu X., Chan M.Y., Wang K., Fong W.P., Cheung W.T., Lee S.S.
PPARα has been known to play a pivotal role in orchestrating lipid, glucose, and amino acid metabolism via transcriptional regulation of its target gene expression during energy deprivation. Recent evidence has also suggested that PPARα is involved in bile acid metabolism, but how PPARα modulates ... >> More
PPARα has been known to play a pivotal role in orchestrating lipid, glucose, and amino acid metabolism via transcriptional regulation of its target gene expression during energy deprivation. Recent evidence has also suggested that PPARα is involved in bile acid metabolism, but how PPARα modulates the homeostasis of bile acids during fasting is still not clear. In a mechanistic study aiming to dissect the spectrum of PPARα target genes involved in metabolic response to fasting, we identified a novel mouse gene (herein named mL-STL for mouse liver-sulfotransferase-like) that shared extensive homology with the Sult2a subfamily of a superfamily of cytosolic sulfotransferases, implying its potential function in sulfonation. The mL-STL gene expressed predominantly in liver in fed state, but PPARα was required to sustain its expression during fasting, suggesting a critical role of PPARα in regulating the mL-STL-mediated sulfonation during fasting. Functional studies using recombinant His-tagged mL-STL protein revealed its narrow sulfonating activities toward 7α-hydroxyl primary bile acids, including cholic acid, chenodeoxycholic acid, and α-muricholic acid, and thus suggesting that mL-STL may be the major hepatic bile acid sulfonating enzyme in mice. Together, these studies identified a novel PPARα-dependent gene and uncovered a new role of PPARα as being an essential regulator in bile acid biotransformation via sulfonation during fasting. << Less
J. Lipid Res. 58:1114-1131(2017) [PubMed] [EuropePMC]
This publication is cited by 7 other entries.