Enzymes
UniProtKB help_outline | 3 proteins |
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
-
Namehelp_outline
L-seryl-[sulfatase]
Identifier
RHEA-COMP:15882
Reactive part
help_outline
- Name help_outline L-serine residue Identifier CHEBI:29999 Charge 0 Formula C3H5NO2 SMILEShelp_outline C([C@H](CO)N*)(=O)* 2D coordinates Mol file for the small molecule Search links Involved in 72 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-methionine Identifier CHEBI:59789 Charge 1 Formula C15H23N6O5S InChIKeyhelp_outline MEFKEPWMEQBLKI-AIRLBKTGSA-O SMILEShelp_outline C[S+](CC[C@H]([NH3+])C([O-])=O)C[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 904 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
3-oxo-L-alanyl-[sulfatase]
Identifier
RHEA-COMP:12901
Reactive part
help_outline
- Name help_outline L-3-oxoalanine residue Identifier CHEBI:85621 Charge 0 Formula C3H3NO2 SMILEShelp_outline C([C@H](C(=O)[H])N*)(=O)* 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 5'-deoxyadenosine Identifier CHEBI:17319 (CAS: 4754-39-6) help_outline Charge 0 Formula C10H13N5O3 InChIKeyhelp_outline XGYIMTFOTBMPFP-KQYNXXCUSA-N SMILEShelp_outline C[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 70 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-methionine Identifier CHEBI:57844 Charge 0 Formula C5H11NO2S InChIKeyhelp_outline FFEARJCKVFRZRR-BYPYZUCNSA-N SMILEShelp_outline CSCC[C@H]([NH3+])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 122 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:17609 | RHEA:17610 | RHEA:17611 | RHEA:17612 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Post-translational formylglycine modification of bacterial sulfatases by the radical S-adenosylmethionine protein AtsB.
Fang Q., Peng J., Dierks T.
C(alpha)-Formylglycine (FGly) is the catalytic residue of sulfatases. FGly is generated by post-translational modification of a cysteine (prokaryotes and eukaryotes) or serine (prokaryotes) located in a conserved (C/S)XPXR motif. AtsB of Klebsiella pneumoniae is directly involved in FGly generatio ... >> More
C(alpha)-Formylglycine (FGly) is the catalytic residue of sulfatases. FGly is generated by post-translational modification of a cysteine (prokaryotes and eukaryotes) or serine (prokaryotes) located in a conserved (C/S)XPXR motif. AtsB of Klebsiella pneumoniae is directly involved in FGly generation from serine. AtsB is predicted to belong to the newly discovered radical S-adenosylmethionine (SAM) superfamily. By in vivo and in vitro studies we show that SAM is the critical co-factor for formation of a functional AtsB.SAM.sulfatase complex and for FGly formation by AtsB. The SAM-binding site of AtsB involves (83)GGE(85) and possibly also a juxtaposed FeS center coordinated by Cys(39) and Cys(42), as indicated by alanine scanning mutagenesis. Mutation of these and other conserved cysteines as well as treatment with metal chelators fully impaired FGly formation, indicating that all three predicted FeS centers are crucial for AtsB function. It is concluded that AtsB oxidizes serine to FGly by a radical mechanism that is initiated through reductive cleavage of SAM, thereby generating the highly oxidizing deoxyadenosyl radical, which abstracts a hydrogen from the serine-C(beta)H(2)-OH side chain. << Less
-
In vitro characterization of AtsB, a radical SAM formylglycine-generating enzyme that contains three [4Fe-4S] clusters.
Grove T.L., Lee K.H., St Clair J., Krebs C., Booker S.J.
Sulfatases catalyze the cleavage of a variety of cellular sulfate esters via a novel mechanism that requires the action of a protein-derived formylglycine cofactor. Formation of the cofactor is catalyzed by an accessory protein and involves the two-electron oxidation of a specific cysteinyl or ser ... >> More
Sulfatases catalyze the cleavage of a variety of cellular sulfate esters via a novel mechanism that requires the action of a protein-derived formylglycine cofactor. Formation of the cofactor is catalyzed by an accessory protein and involves the two-electron oxidation of a specific cysteinyl or seryl residue on the relevant sulfatase. Although some sulfatases undergo maturation via mechanisms in which oxygen serves as an electron acceptor, AtsB, the maturase from Klebsiella pneumoniae, catalyzes the oxidation of Ser72 on AtsA, its cognate sulfatase, via an oxygen-independent mechanism. Moreover, it does not make use of pyridine or flavin nucleotide cofactors as direct electron acceptors. In fact, AtsB has been shown to be a member of the radical S-adenosylmethionine superfamily of proteins, suggesting that it catalyzes this oxidation via an intermediate 5'-deoxyadenosyl 5'-radical that is generated by a reductive cleavage of S-adenosyl-l-methionine. In contrast to AtsA, very little in vitro characterization of AtsB has been conducted. Herein we show that coexpression of the K. pneumoniae atsB gene with a plasmid that encodes genes that are known to be involved in iron-sulfur cluster biosynthesis yields soluble protein that can be characterized in vitro. The as-isolated protein contained 8.7 +/- 0.4 irons and 12.2 +/-2.6 sulfides per polypeptide, which existed almost entirely in the [4Fe-4S] (2+) configuration, as determined by Mossbauer spectroscopy, suggesting that it contained at least two of these clusters per polypeptide. Reconstitution of the as-isolated protein with additional iron and sulfide indicated the presence of 12.3 +/- 0.2 irons and 9.9 +/-0.4 sulfides per polypeptide. Subsequent characterization of the reconstituted protein by Mossbauer spectroscopy indicated the presence of only [4Fe-4S] clusters, suggesting that reconstituted AtsB contains three per polypeptide. Consistent with this stoichiometry, an as-isolated AtsB triple variant containing Cys --> Ala substitutions at each of the cysteines in its CX 3CX 2C radical SAM motif contained 7.3 +/- 0.1 irons and 7.2 +/-0.2 sulfides per polypeptide while the reconstituted triple variant contained 7.7 +/- 0.1 irons and 8.4 +/-0.4 sulfides per polypeptide, indicating that it was unable to incorporate an additional cluster. UV-visible and Mossbauer spectra of both samples indicated the presence of only [4Fe-4S] clusters. AtsB was capable of catalyzing multiple turnovers and exhibited a V max/[E T] of approximately 0.36 min (-1) for an 18-amino acid peptide substrate using dithionite to supply the requisite electron and a value of approximately 0.039 min (-1) for the same substrate using the physiologically relevant flavodoxin reducing system. Simultaneous quantification of formylglycine and 5'-deoxyadenosine as a function of time indicates an approximate 1:1 stoichiometry. Use of a peptide substrate in which the target serine is changed to cysteine also gives rise to turnover, supporting approximately 4-fold the activity of that observed with the natural substrate. << Less
-
The iron sulfur protein AtsB is required for posttranslational formation of formylglycine in the Klebsiella sulfatase.
Szameit C., Miech C., Balleininger M., Schmidt B., von Figura K., Dierks T.
The catalytic residue of eukaryotic and prokaryotic sulfatases is a alpha-formylglycine. In the sulfatase of Klebsiella pneumoniae the formylglycine is generated by posttranslational oxidation of serine 72. We cloned the atsBA operon of K. pneumoniae and found that the sulfatase was expressed in i ... >> More
The catalytic residue of eukaryotic and prokaryotic sulfatases is a alpha-formylglycine. In the sulfatase of Klebsiella pneumoniae the formylglycine is generated by posttranslational oxidation of serine 72. We cloned the atsBA operon of K. pneumoniae and found that the sulfatase was expressed in inactive form in Escherichia coli transformed with the structural gene (atsA). Coexpression of the atsB gene, however, led to production of high sulfatase activity, indicating that the atsB gene product plays a posttranslational role that is essential for the sulfatase to gain its catalytic activity. This was verified after purification of the sulfatase from the periplasm of the cells. Peptide analysis of the protein expressed in the presence of AtsB revealed that half of the polypeptides carried the formylglycine at position 72, while the remaining polypeptides carried the encoded serine. The inactive sulfatase expressed in the absence of AtsB carried exclusively serine 72, demonstrating that the atsB gene is required for formylglycine modification. This gene encodes a 395-amino acid residue iron sulfur protein that has a cytosolic localization and is supposed to directly or indirectly catalyze the oxidation of the serine to formylglycine. << Less