Reaction participants Show >> << Hide
-
Namehelp_outline
[protein]-dithiol
Identifier
RHEA-COMP:10594
Reactive part
help_outline
- Name help_outline L-cysteine residue Identifier CHEBI:29950 Charge 0 Formula C3H5NOS Positionhelp_outline C1 SMILEShelp_outline C(=O)(*)[C@@H](N*)CS 2D coordinates Mol file for the small molecule Search links Involved in 127 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-cysteine residue Identifier CHEBI:29950 Charge 0 Formula C3H5NOS Positionhelp_outline C2 SMILEShelp_outline C(=O)(*)[C@@H](N*)CS 2D coordinates Mol file for the small molecule Search links Involved in 127 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,280 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
S-hydroxy-S-oxy-L-cysteinyl-[peroxiredoxin]
Identifier
RHEA-COMP:17976
Reactive part
help_outline
- Name help_outline S-hydroxy-S-oxo-L-cysteine residue Identifier CHEBI:61974 Charge -1 Formula C3H4NO3S SMILEShelp_outline [C@H](CS(=O)[O-])(C(=O)*)N* 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
[protein]-disulfide
Identifier
RHEA-COMP:10593
Reactive part
help_outline
- Name help_outline L-cystine residue Identifier CHEBI:50058 Charge 0 Formula C6H8N2O2S2 SMILEShelp_outline C([C@@H](N*)CSSC[C@@H](C(=O)*)N*)(=O)* 2D coordinates Mol file for the small molecule Search links Involved in 51 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ADP Identifier CHEBI:456216 (Beilstein: 3783669) help_outline Charge -3 Formula C10H12N5O10P2 InChIKeyhelp_outline XTWYTFMLZFPYCI-KQYNXXCUSA-K SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 841 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 992 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
S-hydroxy-L-cysteinyl-[peroxiredoxin]
Identifier
RHEA-COMP:13681
Reactive part
help_outline
- Name help_outline S-hydroxy-L-cysteine residue Identifier CHEBI:61973 Charge 0 Formula C3H5NO2S SMILEShelp_outline C([C@H](CSO)N*)(=O)* 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:17545 | RHEA:17546 | RHEA:17547 | RHEA:17548 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
MetaCyc help_outline |
Publications
-
The University Association for Emergency Medical Services. History and perspective.
Rutherford R.B.
-
Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine.
Chang T.-S., Jeong W., Woo H.A., Lee S.M., Park S., Rhee S.G.
Peroxiredoxins (Prxs) are a family of peroxidases that reduce hydroperoxides. The cysteine residue in the active site of certain eukaryotic Prx enzymes undergoes reversible oxidation to sulfinic acid (Cys-SO2H) during catalysis, and sulfiredoxin (Srx) has been identified as responsible for reversa ... >> More
Peroxiredoxins (Prxs) are a family of peroxidases that reduce hydroperoxides. The cysteine residue in the active site of certain eukaryotic Prx enzymes undergoes reversible oxidation to sulfinic acid (Cys-SO2H) during catalysis, and sulfiredoxin (Srx) has been identified as responsible for reversal of the resulting enzyme inactivation in yeast. We have now characterized mammalian orthologs of yeast Srx with an assay based on monitoring of the reduction of sulfinic Prx by immunoblot analysis with antibodies specific for the sulfinic state. Sulfinic reduction by mammalian Srx was found to be a slow process (kcat = 0.18/min) that requires ATP hydrolysis. ATP could be efficiently replaced by GTP, dATP, or dGTP but not by CTP, UTP, dCTP, or dTTP. Both glutathione and thioredoxin are potential physiological electron donors for the Srx reaction, given that their Km values (1.8 mM and 1.2 microM, respectively) are in the range of their intracellular concentrations, and the Vmax values obtained with the two reductants were similar. Although its pKa is relatively low (approximately 7.3), the active site cysteine of Srx remained reduced even when the active site cysteine of most Prx molecules became oxidized. Finally, depletion of human Srx by RNA interference suggested that Srx is largely responsible for reduction of the Cys-SO2H of Prx in A549 human cells. << Less
-
Characterization of plant sulfiredoxin and role of sulphinic form of 2-Cys peroxiredoxin.
Iglesias-Baena I., Barranco-Medina S., Lazaro-Payo A., Lopez-Jaramillo F.J., Sevilla F., Lazaro J.-J.
The antioxidant function of 2-Cys peroxiredoxin (Prx) involves the oxidation of its conserved peroxidatic cysteine to sulphenic acid that is recycled by a reductor agent. In conditions of oxidative stress, the peroxidatic cysteine can be overoxidized to sulphinic acid inactivating the Prx. An enzy ... >> More
The antioxidant function of 2-Cys peroxiredoxin (Prx) involves the oxidation of its conserved peroxidatic cysteine to sulphenic acid that is recycled by a reductor agent. In conditions of oxidative stress, the peroxidatic cysteine can be overoxidized to sulphinic acid inactivating the Prx. An enzyme recently discovered, named sulfiredoxin (Srx), reduces the sulphinic 2-Cys Prx (Prx-SO(2)H). To explore the physiological functions of Srx in plants we have cloned, expressed and purified to homogeneity a Srx from Arabidopsis thaliana (AtSrx), as well as five variants by site-directed mutagenesis on amino acids involved in its activity. The activity of sulfiredoxin, determined by a new method, is dependent on the concentration of the sulphinic form of Prx and the conserved Srx is capable of regenerating the functionality of both pea and Arabidopsis Prx-SO(2)H. Molecular modelling of AtSrx and the facts that the R28Q variant shows a partial inactivation, that the activity of the E76A variant is equivalent to that of the native enzyme and that the double mutation R28Q/E76A abolishes the enzymatic activity suggests that the pair His100-Glu76 may be involved in the activation of C72 in the absence of R28. The knock-out mutant plants without Srx or 2-Cys Prx exhibited phenotypical differences under growth conditions of 16 h light, probably due to the signalling role of the sulphinic form of Prx. These mutants showed more susceptibility to oxidative stress than wild-type plants. This work presents the first systematic biochemical characterization of the Srx/Prx system from plants and contributes to a better understanding of its physiological function. << Less
-
Reduction of cysteine sulfinic acid by sulfiredoxin is specific to 2-cys peroxiredoxins.
Woo H.A., Jeong W., Chang T.-S., Park K.J., Park S.J., Yang J.S., Rhee S.G.
Cysteine residues of certain peroxiredoxins (Prxs) undergo reversible oxidation to sulfinic acid (Cys-SO2H) and the reduction reaction is catalyzed by sulfiredoxin (Srx). Specific Cys residues of various other proteins are also oxidized to sulfinic acid, suggesting that formation of Cys-SO2H might ... >> More
Cysteine residues of certain peroxiredoxins (Prxs) undergo reversible oxidation to sulfinic acid (Cys-SO2H) and the reduction reaction is catalyzed by sulfiredoxin (Srx). Specific Cys residues of various other proteins are also oxidized to sulfinic acid, suggesting that formation of Cys-SO2H might be a novel posttranslational modification that contributes to regulation of protein function. To examine the susceptibility of sulfinic forms of proteins to reduction by Srx, we prepared such forms of all six mammalian Prx isoforms and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Purified sulfiredoxin reduced the sulfinic forms of the four 2-Cys members (Prx I to Prx IV) of the Prx family in vitro, but it did not affect those of Prx V, Prx VI, or GAPDH. Furthermore, Srx bound specifically to the four 2-Cys Prxs in vitro and in cells. Sulfinic forms of Prx I and Prx II, but not of Prx VI or GAPDH, present in H2O2-treated A549 cells were gradually reduced after removal of H2O2; overexpression of Srx increased the rate of the reduction of Prx I and Prx II but did not induce that of Prx VI or GAPDH. These results suggest that reduction of Cys-SO2H by Srx is specific to 2-Cys Prx isoforms. For proteins such as Prx VI and GAPDH, sulfinic acid formation might be an irreversible process that causes protein damage. << Less