Reaction participants Show >> << Hide
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,116 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,709 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phthalate Identifier CHEBI:17563 (Beilstein: 3906509; CAS: 3198-29-6) help_outline Charge -2 Formula C8H4O4 InChIKeyhelp_outline XNGIFLGASWRNHJ-UHFFFAOYSA-L SMILEShelp_outline [O-]C(=O)c1ccccc1C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline cis-4,5-dihydroxycyclohexa-2,6-diene-1,2-dicarboxylate Identifier CHEBI:58237 Charge -2 Formula C8H6O6 InChIKeyhelp_outline MFSRJRFDIILHFC-OLQVQODUSA-L SMILEShelp_outline O[C@H]1C=C(C([O-])=O)C(=C[C@H]1O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,186 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:17489 | RHEA:17490 | RHEA:17491 | RHEA:17492 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline |
Publications
-
Chemistry of the catalytic conversion of phthalate into its cis-dihydrodiol during the reaction of oxygen with the reduced form of phthalate dioxygenase.
Tarasev M., Ballou D.P.
The phthalate dioxygenase system, a Rieske non-heme iron dioxygenase, catalyzes the dihydroxylation of phthalate to form the 4,5-dihydro-cis-dihydrodiol of phthalate (DHD). It has two components: phthalate dioxygenase (PDO), a multimer with one Rieske-type [2Fe-2S] and one mononuclear Fe(II) cente ... >> More
The phthalate dioxygenase system, a Rieske non-heme iron dioxygenase, catalyzes the dihydroxylation of phthalate to form the 4,5-dihydro-cis-dihydrodiol of phthalate (DHD). It has two components: phthalate dioxygenase (PDO), a multimer with one Rieske-type [2Fe-2S] and one mononuclear Fe(II) center per monomer, and a reductase (PDR) that contains flavin mononucleotide (FMN) and a plant-type ferredoxin [2Fe-2S] center. This work shows that product formation in steady-state reactions is tightly coupled to electron delivery, with 1 dihydrodiol (DHD) of phthalate formed for every 2 electrons delivered from NADH. However, in reactions of reduced PDO with O(2), only about 0.5 DHD is formed per Rieske center that becomes oxidized. Although the product forms rapidly, its release from PDO is slow in these reactions with oxygen that do not include reductase and NADH. EPR data show that, at the completion of the oxidation, iron in the mononuclear center remains in the ferrous state. In contrast, naphthalene dioxygenase (NDO) [Wolfe, M. D., Parales, J. V., Gibson, D. T., and Lipscomb, J. D. (2001) J. Biol. Chem. 276, 1945-1953] and benzoate dioxygenase (BZDO) [Wolfe, M. D., Altier, D. J., Stubna, A., Popescu, C. V., Munck, E., and Lipscomb, J. D. (2002) Biochemistry, 41, 9611-9626], related Rieske non-heme iron dioxygenases, form 1 DHD per Rieske center oxidized, and the mononuclear center iron ends up ferric. Thus, both electrons from reduced NDO and BZDO monomers are used to form the product, whereas only the reduced Rieske centers in PDO become oxidized during production of DHD. This emphasizes the importance of PDO subunit interaction in catalysis. Electron redistribution was practically unaffected by the presence of oxidized PDR. A scheme is presented that emphasizes some of the differences in the mechanisms involved in substrate hydroxylation employed by PDO and either NDO or BZDO. << Less
-
Purification and characterization of phthalate oxygenase and phthalate oxygenase reductase from Pseudomonas cepacia.
Batie C.J., LaHaie E., Ballou D.P.
An enzymatic system has been isolated that catalyzes dihydroxylation of phthalate to form 1,2-dihydroxy-4,5-dicarboxy-3,5-cyclohexadiene with consumption of NADH and O2. This system is comprised of two proteins: a flavo-iron-sulfur protein with NADH-dependent oxidoreductase activity and a nonheme ... >> More
An enzymatic system has been isolated that catalyzes dihydroxylation of phthalate to form 1,2-dihydroxy-4,5-dicarboxy-3,5-cyclohexadiene with consumption of NADH and O2. This system is comprised of two proteins: a flavo-iron-sulfur protein with NADH-dependent oxidoreductase activity and a nonheme iron protein with oxygenase activity. Phthalate oxygenase is a large (approximately 217 kDa) protein composed of apparently identical 48-kDa monomers. The active enzyme has one Rieske-type [2Fe-2S] center and one mononuclear iron/monomer. Removal of the mononuclear iron by incubation with EDTA or with o-phenanthroline inhibits oxygenation; ferrous ion completely restores activity. No other metals are effective. Phthalate oxygenase is specific for phthalate or other closely related compounds. However, only phthalate is tightly coupled to NADH oxidation and O2 consumption with a stoichiometry of 1:1:1. Phthalate oxygenase is chemically competent to oxygenate phthalate when artificially supplied with reducing equivalents and O2. Phthalate oxygenase reductase is required, however, for efficient catalytic activity. The reductase is a monomeric 34-kDa flavo-iron-sulfur protein containing FMN and a plant-ferredoxin-type [2Fe-2S] center in a 1:1 ratio. Phthalate oxygenase reductase is specific for NADH but can pass electrons to a variety of acceptors, including: phthalate oxygenase, cytochrome c, ferricyanide, and dichlorophenolindophenol. This system is similar to other bacterial oxygenase systems involved in aromatic degradation including: benzoate dioxygenase, toluene dioxygenase, benzene dioxygenase, and 4-methoxybenzoate demethoxylase. However, phthalate oxygenase can be isolated in large quantities and is more stable than most other such systems. << Less
J Biol Chem 262:1510-1518(1987) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Phthalate dioxygenase.
Batie C.J., Ballou D.P.
-
Rates of the phthalate dioxygenase reaction with oxygen are dramatically increased by interactions with phthalate and phthalate oxygenase reductase.
Tarasev M., Rhames F., Ballou D.P.
The phthalate dioxygenase system, which catalyzes the dihydroxylation of phthalate to form its cis-dihydrodiol (DHD), has two components: phthalate dioxygenase (PDO), a multimer with one Rieske-type [2Fe-2S] and one Fe(II) center per monomer, and phthalate dioxygenase reductase (PDR), which contai ... >> More
The phthalate dioxygenase system, which catalyzes the dihydroxylation of phthalate to form its cis-dihydrodiol (DHD), has two components: phthalate dioxygenase (PDO), a multimer with one Rieske-type [2Fe-2S] and one Fe(II) center per monomer, and phthalate dioxygenase reductase (PDR), which contains flavin mononucleotide (FMN) and a plant-like ferredoxin [2Fe-2S] center. PDR is responsible for transferring electrons from NADH to the Rieske center of PDO, and the Rieske center supplies electrons to the mononuclear center for the oxygenation of substrate. Reduced PDO (PDO(red)) that lacks Fe(II) at the mononuclear metal site (PDO-APO) reacts slowly with O(2) (1.4 x 10(-3) s(-1) at 125 microM O(2) and 22 degrees C), presumably in a direct reaction with the Rieske center. Binding of phthalate and/or PDR(ox) to reduced PDO-APO increases the reactivity of the Rieske center with O(2). When no PDR or phthalate is present, the oxidation of the Rieske center in native PDO(red) [which contains Fe(II) at the mononuclear site] occurs in two phases (approximately 1 and 0.1 s(-1) at 125 mM O(2), 23 degrees C), both much faster than in the absence of Fe(II), presumably because in this case O(2) reacts at the mononuclear Fe(II). Addition of PDR(ox) to native PDO(red) resulted in a large fraction of the Rieske center being oxidized at 5 s(-1), and the addition of phthalate resulted in about 70% of the reaction proceeding at 42 s(-1). With both PDR(ox) and phthalate present, most of the PDO(red) (approximately 80-85%) oxidizes at 42 s(-1), with the remaining oxidizing at approximately 5 s(-1). Thus, the binding of phthalate or PDR(ox) to PDO(red) each results in greater reactivity of PDO with O(2). The presence of both the substrate and PDR was synergistic, making PDO fully catalytically active. A model that explains the observed effects is presented and discussed in terms of PDO subunit cooperativity. It is proposed that, during oxidation of reduced PDO, each of two Rieske centers on separate subunits transfers an electron to the Fe(II) mononuclear center on a third subunit. This explanation is consistent with the observed multiphasic kinetics of the oxidation of the Rieske center and is being further tested by product analysis experiments. << Less