Enzymes
UniProtKB help_outline | 5,407 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline (2S)-4-acetamido-2-aminobutanoate Identifier CHEBI:58929 Charge 0 Formula C6H12N2O3 InChIKeyhelp_outline YLZRFVZUZIJABA-YFKPBYRVSA-N SMILEShelp_outline CC(=O)NCC[C@H]([NH3+])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-ectoine Identifier CHEBI:58515 Charge 0 Formula C6H10N2O2 InChIKeyhelp_outline WQXNXVUDBPYKBA-YFKPBYRVSA-N SMILEShelp_outline CC1=[NH+][C@@H](CCN1)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:17281 | RHEA:17282 | RHEA:17283 | RHEA:17284 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Osmotically regulated synthesis of the compatible solute ectoine in Bacillus pasteurii and related Bacillus spp.
Kuhlmann A.U., Bremer E.
By using natural-abundance (13)C-nuclear magnetic resonance spectroscopy and high-performance liquid chromatography (HPLC) analysis we have investigated the types of compatible solutes that are synthesized de novo in a variety of Bacillus species under high-osmolality growth conditions. Five diffe ... >> More
By using natural-abundance (13)C-nuclear magnetic resonance spectroscopy and high-performance liquid chromatography (HPLC) analysis we have investigated the types of compatible solutes that are synthesized de novo in a variety of Bacillus species under high-osmolality growth conditions. Five different patterns of compatible solute production were found among the 13 Bacillus species we studied. Bacillus subtilis, B. licheniformis, and B. megaterium produced proline; B. cereus, B. circulans, B. thuringiensis, Paenibacillus polymyxa, and Aneurinibacillus aneurinilyticus synthesized glutamate; B. alcalophilus, B. psychrophilus, and B. pasteurii synthesized ectoine; and Salibacillus (formerly Bacillus) salexigens produced both ectoine and hydroxyectoine, whereas Virgibacillus (formerly Bacillus) pantothenticus synthesized both ectoine and proline. Hence, the ability to produce the tetrahydropyrimidine ectoine under hyperosmotic growth conditions is widespread within the genus Bacillus and closely related taxa. To study ectoine biosynthesis within the group of Bacillus species in greater detail, we focused on B. pasteurii. We cloned and sequenced its ectoine biosynthetic genes (ectABC). The ectABC genes encode the diaminobutyric acid acetyltransferase (EctA), the diaminobutyric acid aminotransferase (EctB), and the ectoine synthase (EctC). Together these proteins constitute the ectoine biosynthetic pathway, and their heterologous expression in B. subtilis led to the production of ectoine. Northern blot analysis demonstrated that the ectABC genes are genetically organized as an operon whose expression is strongly enhanced when the osmolality of the growth medium is raised. Primer extension analysis allowed us to pinpoint the osmoregulated promoter of the B. pasteurii ectABC gene cluster. HPLC analysis of osmotically challenged B. pasteurii cells revealed that ectoine production within this bacterium is finely tuned and closely correlated with the osmolality of the growth medium. These observations together with the osmotic control of ectABC transcription suggest that the de novo synthesis of ectoine is an important facet in the cellular adaptation of B. pasteurii to high-osmolarity surroundings. << Less
Appl. Environ. Microbiol. 68:772-783(2002) [PubMed] [EuropePMC]
-
Characterization of genes for the biosynthesis of the compatible solute ectoine from Marinococcus halophilus and osmoregulated expression in Escherichia coli.
Louis P., Galinski E.A.
The genes of the biosynthetic pathway of ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid) from the Gram-positive moderate halophile Marinococcus halophilus were cloned by functional expression in Escherichia coli. These genes were not only expressed, but also osmoregulated in E. c ... >> More
The genes of the biosynthetic pathway of ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid) from the Gram-positive moderate halophile Marinococcus halophilus were cloned by functional expression in Escherichia coli. These genes were not only expressed, but also osmoregulated in E. coli, as demonstrated by increasing cytoplasmic ectoine concentration in response to medium salinity. Sequencing of a 4.4 kb fragment revealed four major ORFs, which were designated ectA, ectB, ectC and orfA. The significance of three of these genes for ectoine synthesis was proved by sequence comparison with known proteins and by physiological experiments. Several deletion derivatives of the sequenced fragment were introduced into E. coli and the resulting clones were investigated for their ability to synthesize ectoine or one of the intermediates in its biosynthetic pathway. It was demonstrated that ectA codes for L-2,4-diaminobutyric acid acetyltransferase, ectB for L-2,4-diaminobutyric acid transaminase and ectC for L-ectoine synthase. A DNA region upstream of ectA was shown to be necessary for the regulated expression of ectoine synthesis in response to the osmolarity of the medium. << Less
Microbiology 143:1141-1149(1997) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Characterization of biosynthetic enzymes for ectoine as a compatible solute in a moderately halophilic eubacterium, Halomonas elongata.
Ono H., Sawada K., Khunajakr N., Tao T., Yamamoto M., Hiramoto M., Shinmyo A., Takano M., Murooka Y.
1,4,5,6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid (ectoine) is an excellent osmoprotectant. The biosynthetic pathway of ectoine from aspartic beta-semialdehyde (ASA), in Halomonas elongata, was elucidated by purification and characterization of each enzyme involved. 2,4-Diaminobutyrate (DABA ... >> More
1,4,5,6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid (ectoine) is an excellent osmoprotectant. The biosynthetic pathway of ectoine from aspartic beta-semialdehyde (ASA), in Halomonas elongata, was elucidated by purification and characterization of each enzyme involved. 2,4-Diaminobutyrate (DABA) aminotransferase catalyzed reversively the first step of the pathway, conversion of ASA to DABA by transamination with L-glutamate. This enzyme required pyridoxal 5'-phosphate and potassium ions for its activity and stability. The gel filtration estimated an apparent molecular mass of 260 kDa, whereas molecular mass measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was 44 kDa. This enzyme exhibited an optimum pH of 8.6 and an optimum temperature of 25 degreesC and had Kms of 9.1 mM for L-glutamate and 4.5 mM for DL-ASA. DABA acetyltransferase catalyzed acetylation of DABA to gamma-N-acetyl-alpha,gamma-diaminobutyric acid (ADABA) with acetyl coenzyme A and exhibited an optimum pH of 8.2 and an optimum temperature of 20 degreesC in the presence of 0.4 M NaCl. The molecular mass was 45 kDa by gel filtration. Ectoine synthase catalyzed circularization of ADABA to ectoine and exhibited an optimum pH of 8.5 to 9.0 and an optimum temperature of 15 degreesC in the presence of 0.5 M NaCl. This enzyme had an apparent molecular mass of 19 kDa by SDS-PAGE and a Km of 8.4 mM in the presence of 0. 77 M NaCl. DABA acetyltransferase and ectoine synthase were stabilized in the presence of NaCl (>2 M) and DABA (100 mM) at temperatures below 30 degreesC. << Less
J. Bacteriol. 181:91-99(1999) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.