Reaction participants Show >> << Hide
- Name help_outline (R)-carnitine Identifier CHEBI:16347 (Beilstein: 4292315,5732837; CAS: 541-15-1) help_outline Charge 0 Formula C7H15NO3 InChIKeyhelp_outline PHIQHXFUZVPYII-ZCFIWIBFSA-N SMILEShelp_outline C[N+](C)(C)C[C@H](O)CC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 48 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline octanoyl-CoA Identifier CHEBI:57386 Charge -4 Formula C29H46N7O17P3S InChIKeyhelp_outline KQMZYOXOBSXMII-CECATXLMSA-J SMILEShelp_outline CCCCCCCC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 31 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,500 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O-octanoyl-(R)-carnitine Identifier CHEBI:18102 (CAS: 25243-95-2) help_outline Charge 0 Formula C15H29NO4 InChIKeyhelp_outline CXTATJFJDMJMIY-CYBMUJFWSA-N SMILEShelp_outline CCCCCCCC(=O)O[C@H](CC([O-])=O)C[N+](C)(C)C 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:17177 | RHEA:17178 | RHEA:17179 | RHEA:17180 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Crystal structure of mouse carnitine octanoyltransferase and molecular determinants of substrate selectivity.
Jogl G., Hsiao Y.S., Tong L.
Carnitine acyltransferases have crucial functions in fatty acid metabolism. Members of this enzyme family show distinctive substrate preferences for short-, medium- or long-chain fatty acids. The molecular mechanism for this substrate selectivity is not clear as so far only the structure of carnit ... >> More
Carnitine acyltransferases have crucial functions in fatty acid metabolism. Members of this enzyme family show distinctive substrate preferences for short-, medium- or long-chain fatty acids. The molecular mechanism for this substrate selectivity is not clear as so far only the structure of carnitine acetyltransferase has been determined. To further our understanding of these important enzymes, we report here the crystal structures at up to 2.0-A resolution of mouse carnitine octanoyltransferase alone and in complex with the substrate octanoylcarnitine. The structures reveal significant differences in the acyl group binding pocket between carnitine octanoyltransferase and carnitine acetyltransferase. Amino acid substitutions and structural changes produce a larger hydrophobic pocket that binds the octanoyl group in an extended conformation. Mutation of a single residue (Gly-553) in this pocket can change the substrate preference between short- and medium-chain acyl groups. The side chains of Cys-323 and Met-335 at the bottom of this pocket assume dual conformations in the substrate complex, and mutagenesis studies suggest that the Met-335 residue is important for catalysis. << Less
-
Substrate specificity of human carnitine acetyltransferase: Implications for fatty acid and branched-chain amino acid metabolism.
Violante S., Ijlst L., Ruiter J., Koster J., van Lenthe H., Duran M., de Almeida I.T., Wanders R.J., Houten S.M., Ventura F.V.
Carnitine acyltransferases catalyze the reversible conversion of acyl-CoAs into acylcarnitine esters. This family includes the mitochondrial enzymes carnitine palmitoyltransferase 2 (CPT2) and carnitine acetyltransferase (CrAT). CPT2 is part of the carnitine shuttle that is necessary to import fat ... >> More
Carnitine acyltransferases catalyze the reversible conversion of acyl-CoAs into acylcarnitine esters. This family includes the mitochondrial enzymes carnitine palmitoyltransferase 2 (CPT2) and carnitine acetyltransferase (CrAT). CPT2 is part of the carnitine shuttle that is necessary to import fatty acids into mitochondria and catalyzes the conversion of acylcarnitines into acyl-CoAs. In addition, when mitochondrial fatty acid β-oxidation is impaired, CPT2 is able to catalyze the reverse reaction and converts accumulating long- and medium-chain acyl-CoAs into acylcarnitines for export from the matrix to the cytosol. However, CPT2 is inactive with short-chain acyl-CoAs and intermediates of the branched-chain amino acid oxidation pathway (BCAAO). In order to explore the origin of short-chain and branched-chain acylcarnitines that may accumulate in various organic acidemias, we performed substrate specificity studies using purified recombinant human CrAT. Various saturated, unsaturated and branched-chain acyl-CoA esters were tested and the synthesized acylcarnitines were quantified by ESI-MS/MS. We show that CrAT converts short- and medium-chain acyl-CoAs (C2 to C10-CoA), whereas no activity was observed with long-chain species. Trans-2-enoyl-CoA intermediates were found to be poor substrates for this enzyme. Furthermore, CrAT turned out to be active towards some but not all the BCAAO intermediates tested and no activity was found with dicarboxylic acyl-CoA esters. This suggests the existence of another enzyme able to handle the acyl-CoAs that are not substrates for CrAT and CPT2, but for which the corresponding acylcarnitines are well recognized as diagnostic markers in inborn errors of metabolism. << Less
Biochim. Biophys. Acta 1832:773-779(2013) [PubMed] [EuropePMC]
This publication is cited by 12 other entries.
-
Redesign of carnitine acetyltransferase specificity by protein engineering.
Cordente A.G., Lopez-Vinas E., Vazquez M.I., Swiegers J.H., Pretorius I.S., Gomez-Puertas P., Hegardt F.G., Asins G., Serra D.
In eukaryotes, L-carnitine is involved in energy metabolism by facilitating beta-oxidation of fatty acids. Carnitine acetyltransferases (CrAT) catalyze the reversible conversion of acetyl-CoA and carnitine to acetylcarnitine and free CoA. To redesign the specificity of rat CrAT toward its substrat ... >> More
In eukaryotes, L-carnitine is involved in energy metabolism by facilitating beta-oxidation of fatty acids. Carnitine acetyltransferases (CrAT) catalyze the reversible conversion of acetyl-CoA and carnitine to acetylcarnitine and free CoA. To redesign the specificity of rat CrAT toward its substrates, we mutated Met564. The M564G mutated CrAT showed higher activity toward longer chain acyl-CoAs: activity toward myristoyl-CoA was 1250-fold higher than that of the wild-type CrAT, and lower activity toward its natural substrate, acetyl-CoA. Kinetic constants of the mutant CrAT showed modification in favor of longer acyl-CoAs as substrates. In the reverse case, mutation of the orthologous glycine (Gly553) to methionine in carnitine octanoyltransferase (COT) decreased activity toward its natural substrates, medium- and long-chain acyl-CoAs, and increased activity toward short-chain acyl-CoAs. Another CrAT mutant, M564A, was prepared and tested in the same way, with similar results. We conclude that Met564 blocks the entry of medium- and long-chain acyl-CoAs to the catalytic site of CrAT. Three-dimensional models of wild-type and mutated CrAT and COT support this hypothesis. We show for the first time that a single amino acid is able to determine the substrate specificity of CrAT and COT. << Less
-
Structure and function of carnitine acyltransferases.
Jogl G., Hsiao Y.S., Tong L.
Carnitine acyltransferases catalyze the exchange of acyl groups between carnitine and coenzyme A (CoA). These enzymes include carnitine acetyltransferase (CrAT), carnitine octanoyltransferase (CrOT), and carnitine palmitoyltransferases (CPTs). CPT-I and CPT-II are crucial for the beta-oxidation of ... >> More
Carnitine acyltransferases catalyze the exchange of acyl groups between carnitine and coenzyme A (CoA). These enzymes include carnitine acetyltransferase (CrAT), carnitine octanoyltransferase (CrOT), and carnitine palmitoyltransferases (CPTs). CPT-I and CPT-II are crucial for the beta-oxidation of long-chain fatty acids in the mitochondria by enabling their transport across the mitochondrial membrane. The activity of CPT-I is inhibited by malonyl-CoA, a crucial regulatory mechanism for fatty acid oxidation. Mutation or dysregulation of the CPT enzymes has been linked to many serious, even fatal human diseases, and these enzymes are promising targets for the development of therapeutic agents against type 2 diabetes and obesity. We have determined the crystal structures of murine CrAT, alone and in complex with its substrate carnitine or CoA. The structure contains two domains. Surprisingly, these two domains share the same backbone fold, which is also similar to that of chloramphenicol acetyltransferase and dihydrolipoyl transacetylase. The active site is located at the interface between the two domains, in a tunnel that extends through the center of the enzyme. Carnitine and CoA are bound in this tunnel, on opposite sides of the catalytic His343 residue. The structural information provides a molecular basis for understanding the catalysis by carnitine acyltransferases and for designing their inhibitors. In addition, our structural information suggests that the substrate carnitine may assist the catalysis by stabilizing the oxyanion in the reaction intermediate. << Less
-
Carnitine palmitoyltransferase 2: New insights on the substrate specificity and implications for acylcarnitine profiling.
Violante S., Ijlst L., van Lenthe H., de Almeida I.T., Wanders R.J., Ventura F.V.
Over the last years acylcarnitines have emerged as important biomarkers for the diagnosis of mitochondrial fatty acid beta-oxidation (mFAO) and branched-chain amino acid oxidation disorders assuming they reflect the potentially toxic acyl-CoA species, accumulating intramitochondrially upstream of ... >> More
Over the last years acylcarnitines have emerged as important biomarkers for the diagnosis of mitochondrial fatty acid beta-oxidation (mFAO) and branched-chain amino acid oxidation disorders assuming they reflect the potentially toxic acyl-CoA species, accumulating intramitochondrially upstream of the enzyme block. However, the origin of these intermediates still remains poorly understood. A possibility exists that carnitine palmitoyltransferase 2 (CPT2), member of the carnitine shuttle, is involved in the intramitochondrial synthesis of acylcarnitines from accumulated acyl-CoA metabolites. To address this issue, the substrate specificity profile of CPT2 was herein investigated. Saccharomyces cerevisiae homogenates expressing human CPT2 were incubated with saturated and unsaturated C2-C26 acyl-CoAs and branched-chain amino acid oxidation intermediates. The produced acylcarnitines were quantified by ESI-MS/MS. We show that CPT2 is active with medium (C8-C12) and long-chain (C14-C18) acyl-CoA esters, whereas virtually no activity was found with short- and very long-chain acyl-CoAs or with branched-chain amino acid oxidation intermediates. Trans-2-enoyl-CoA intermediates were also found to be poor substrates for CPT2. Inhibition studies performed revealed that trans-2-C16:1-CoA may act as a competitive inhibitor of CPT2 (K(i) of 18.8 microM). The results obtained clearly demonstrate that CPT2 is able to reverse its physiological mechanism for medium and long-chain acyl-CoAs contributing to the abnormal acylcarnitines profiles characteristic of most mFAO disorders. The finding that trans-2-enoyl-CoAs are poorly handled by CPT2 may explain the absence of trans-2-enoyl-carnitines in the profiles of mitochondrial trifunctional protein deficient patients, the only defect where they accumulate, and the discrepancy between the clinical features of this and other long-chain mFAO disorders such as very long-chain acyl-CoA dehydrogenase deficiency. << Less
Biochim. Biophys. Acta 1802:728-732(2010) [PubMed] [EuropePMC]
This publication is cited by 10 other entries.
-
Molecular cloning and expression of human carnitine octanoyltransferase: evidence for its role in the peroxisomal beta-oxidation of branched-chain fatty acids.
Ferdinandusse S., Mulders J., Ijlst L., Denis S., Dacremont G., Waterham H.R., Wanders R.J.A.
To study the putative role of human carnitine octanoyltransferase (COT) in the beta-oxidation of branched-chain fatty acids, we identified and cloned the cDNA encoding human COT and expressed it in the yeast Saccharomyces cerevisiae. Enzyme activity measurements showed that COT efficiently convert ... >> More
To study the putative role of human carnitine octanoyltransferase (COT) in the beta-oxidation of branched-chain fatty acids, we identified and cloned the cDNA encoding human COT and expressed it in the yeast Saccharomyces cerevisiae. Enzyme activity measurements showed that COT efficiently converts one of the end products of the peroxisomal beta-oxidation of pristanic acid, 4, 8-dimethylnonanoyl-CoA, to its corresponding carnitine ester. Production of the carnitine ester of this branched/medium-chain acyl-CoA within the peroxisome is required for its transport to the mitochondrion where further beta-oxidation occurs. In contrast, 4, 8-dimethylnonanoyl-CoA is not a substrate for carnitine acetyltransferase, another acyltransferase localized in peroxisomes, which catalyzes the formation of carnitine esters of the other products of pristanic acid beta-oxidation, namely acetyl-CoA and propionyl-CoA. Our results shed new light on the function of COT in fatty acid metabolism and point to a crucial role of COT in the beta-oxidation of branched-chain fatty acids. << Less
Biochem. Biophys. Res. Commun. 263:213-218(1999) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.