Enzymes
UniProtKB help_outline | 1 proteins |
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline acetyl-CoA Identifier CHEBI:57288 (Beilstein: 8468140) help_outline Charge -4 Formula C23H34N7O17P3S InChIKeyhelp_outline ZSLZBFCDCINBPY-ZSJPKINUSA-J SMILEShelp_outline CC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 352 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline α-D-galactosamine 1-phosphate Identifier CHEBI:142399 Charge -1 Formula C6H13NO8P InChIKeyhelp_outline YMJBYRVFGYXULK-VFUOTHLCSA-M SMILEShelp_outline [C@H]1([C@@H]([C@H]([C@H]([C@H](O1)CO)O)O)[NH3+])OP([O-])(=O)[O-] 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,500 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline N-acetyl-α-D-galactosamine 1-phosphate Identifier CHEBI:61970 Charge -2 Formula C8H14NO9P InChIKeyhelp_outline FZLJPEPAYPUMMR-JAJWTYFOSA-L SMILEShelp_outline CC(=O)N[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:17169 | RHEA:17170 | RHEA:17171 | RHEA:17172 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline |
Publications
-
Identification of novel acetyltransferase activity on the thermostable protein ST0452 from Sulfolobus tokodaii strain 7.
Zhang Z., Akutsu J., Kawarabayasi Y.
A 401-residue-long protein, ST0452, has been identified from a thermophilic archaeon, Sulfolobus tokodaii strain 7, as a glucose-1-phosphate thymidylyltransferase (Glc-1-P TTase) homolog with a 170-residue-long extra C-terminus portion. Functional analyses of the ST0452 protein have confirmed that ... >> More
A 401-residue-long protein, ST0452, has been identified from a thermophilic archaeon, Sulfolobus tokodaii strain 7, as a glucose-1-phosphate thymidylyltransferase (Glc-1-P TTase) homolog with a 170-residue-long extra C-terminus portion. Functional analyses of the ST0452 protein have confirmed that the protein possessed dual sugar-1-phosphate nucleotidylyltransferase (sugar-1-P NTase) activities. The 24 repeats of a signature motif sequence which has been found in bacterial acetyltransferases, (L/I/V)-(G/A/E/D)-XX-(S/T/A/V)-X, were detected at the C terminus of the ST0452 protein. This observation prompted our group to investigate the acetyltransferase activity of the ST0452 protein. Detection of the release of coenzyme A (CoA) from acetyl-CoA and the production of UDP-N-acetyl-d-glucosamine (UDP-GlcNAc) from glucosamine-1-phosphate (GlcN-1-P) and UTP in the presence of the ST0452 protein revealed that this protein possesses the GlcN-1-P-specific acetyltransferase activity. In addition, analyses of substrate specificity showed that acetyltransferase activity of the ST0452 protein is capable of catalyzing the change of galactosamine-1-phosphate (GalN-1-P) to N-acetyl-d-galactosamine-1-phosphate (GalNAc-1-P) as well as GlcN-1-P and that its sugar-1-P NTase activity is capable of producing UDP-GalNAc from GalNAc-1-P and UTP. This is the first report of a thermostable bifunctional enzyme with GalN-1-P acetyltransferase and GalNAc-1-P uridyltransferase activities. The observation reveals that the bacteria-type UDP-GlcNAc biosynthetic pathway from fructose-6-phospate is utilized in this archaeon and represents a novel biosynthetic pathway for producing UDP-GalNAc from GalN-1-P in this microorganism. << Less
-
Identification of an extremely thermostable enzyme with dual sugar-1-phosphate nucleotidylyltransferase activities from an acidothermophilic archaeon, Sulfolobus tokodaii strain 7.
Zhang Z., Tsujimura M., Akutsu J., Sasaki M., Tajima H., Kawarabayasi Y.
L-rhamnose is an essential component of the cell wall and plays roles in mediating virulence and adhesion to host tissues in many microorganisms. Glucose-1-phosphate thymidylyltransferase (RmlA, EC 2.7.7.24) catalyzes the first reaction of the four-step pathway of L-rhamnose biosynthesis, producin ... >> More
L-rhamnose is an essential component of the cell wall and plays roles in mediating virulence and adhesion to host tissues in many microorganisms. Glucose-1-phosphate thymidylyltransferase (RmlA, EC 2.7.7.24) catalyzes the first reaction of the four-step pathway of L-rhamnose biosynthesis, producing dTDP-D-glucose from dTTP and glucose-1-phosphate. Three RmlA homologues of varying size have been identified in the genome of a thermophilic archaeon, Sulfolobus tokodaii strain 7. In this study, we report the heterologous expression of the largest homologue (a 401 residue-long ST0452 protein) and characterization of its thermostable activity. RmlA enzymatic activity of this protein was detected from 65 to 100 degrees C, with a half-life of 60 min at 95 degrees C and 180 min at 80 degrees C. Analysis of a deletion mutant lacking the 170-residue C-terminal domain indicated that this region has an important role in the thermostability and activity of the protein. Analyses of substrate specificity indicated that the enzymatic activity of the full-length protein is capable of utilizing alpha-D-glucose-1-phosphate and N-acetyl-D-glucosamine-1-phosphate but not alpha-D-glucosamine-1-phosphate. However, the protein is capable of utilizing all four deoxyribonucleoside triphosphates and UTP. Thus, the ST0452 protein is an enzyme containing both glucose-1-phosphate thymidylyltransferase and N-acetyl-D-glucosamine-1-phosphate uridylyltransferase activities. This is the first report of a thermostable enzyme with dual sugar-1-phosphate nucleotidylyltransferase activities. << Less
J. Biol. Chem. 280:9698-9705(2005) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Identification of a direct biosynthetic pathway for UDP-N-acetylgalactosamine from glucosamine-6-phosphate in thermophilic crenarchaeon Sulfolobus tokodaii.
Dadashipour M., Iwamoto M., Hossain M.M., Akutsu J.I., Zhang Z., Kawarabayasi Y.
Most organisms, from <i>Bacteria</i> to <i>Eukarya</i>, synthesize UDP-<i>N</i>-acetylglucosamine (UDP-GlcNAc) from fructose-6-phosphate via a four-step reaction, and UDP-<i>N</i>-acetylgalactosamine (UDP-GalNAc) can only be synthesized from UDP-GlcNAc by UDP-GlcNAc 4-epimerase. In <i>Archaea</i>, ... >> More
Most organisms, from <i>Bacteria</i> to <i>Eukarya</i>, synthesize UDP-<i>N</i>-acetylglucosamine (UDP-GlcNAc) from fructose-6-phosphate via a four-step reaction, and UDP-<i>N</i>-acetylgalactosamine (UDP-GalNAc) can only be synthesized from UDP-GlcNAc by UDP-GlcNAc 4-epimerase. In <i>Archaea</i>, the bacterial-type UDP-GlcNAc biosynthetic pathway was reported for <i>Methanococcales.</i> However, the complete biosynthetic pathways for UDP-GlcNAc and UDP-GalNAc present in one archaeal species are unidentified. Previous experimental analyses on enzymatic activities of the ST0452 protein, identified from the thermophilic crenarchaeon <i>Sulfolobus tokodaii</i>, predicted the presence of both a bacterial-type UDP-GlcNAc and an independent UDP-GalNAc biosynthetic pathway in this archaeon. In the present work, functional analyses revealed that the recombinant ST2186 protein possessed an glutamine:fructose-6-phosphate amidotransferase activity and that the recombinant ST0242 protein possessed a phosphoglucosamine-mutase activity. Along with the acetyltransferase and uridyltransferase activities of the ST0452 protein, the activities of the ST2186 and ST0242 proteins confirmed the presence of a bacterial-type UDP-GlcNAc biosynthetic pathway in <i>S. tokodaii</i> In contrast, the UDP-GlcNAc 4-epimerase homologue gene was not detected within the genomic data. Thus, it was expected that galactosamine-1-phosphate or galactosamine-6-phosphate (GalN-6-P) was provided by conversion of glucosamine-1-phosphate or glucosamine-6-phosphate (GlcN-6-P). A novel epimerase converting GlcN-6-P to GalN-6-P was detected in a cell extract of <i>S. tokodaii</i>, and the N-terminal sequence of the purified protein indicated that the novel epimerase was encoded by the ST2245 gene. Along with the ST0242 phosphogalactosamine-mutase activity, this observation confirmed the presence of a novel UDP-GalNAc biosynthetic pathway from GlcN-6-P in <i>S. tokodaii</i> Discovery of the novel pathway provides a new insight into the evolution of nucleotide sugar metabolic pathways.<b>IMPORTANCE</b> In this work, a novel protein capable of directly converting glucosamine-6-phosphate to galactosamine-6-phosphate was successfully purified from a cell extract of the thermophilic crenarchaeon <i>Sulfolobus tokodaii</i> Confirmation of this novel activity using the recombinant protein indicates that <i>S. tokodaii</i> possesses a novel UDP-GalNAc biosynthetic pathway derived from glucosamine-6-phosphate. The distributions of this and related genes indicate the presence of three different types of UDP-GalNAc biosynthetic pathways: a direct pathway using a novel enzyme and two conversion pathways from UDP-GlcNAc using known enzymes. Additionally, <i>Crenarchaeota</i> species lacking all three pathways were found, predicting the presence of one more unknown pathway. Identification of these novel proteins and pathways provides important insights into the evolution of nucleotide sugar biosynthesis, as well as being potentially important industrially. << Less
J. Bacteriol. 200:E00048-E00048(2018) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.