Reaction participants Show >> << Hide
- Name help_outline (R)-mevalonate Identifier CHEBI:36464 Charge -1 Formula C6H11O4 InChIKeyhelp_outline KJTLQQUUPVSXIM-ZCFIWIBFSA-M SMILEShelp_outline C[C@@](O)(CCO)CC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 6 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,280 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (R)-5-phosphomevalonate Identifier CHEBI:58146 Charge -3 Formula C6H10O7P InChIKeyhelp_outline OKZYCXHTTZZYSK-ZCFIWIBFSA-K SMILEShelp_outline C[C@@](O)(CCOP([O-])([O-])=O)CC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ADP Identifier CHEBI:456216 (Beilstein: 3783669) help_outline Charge -3 Formula C10H12N5O10P2 InChIKeyhelp_outline XTWYTFMLZFPYCI-KQYNXXCUSA-K SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 841 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:17065 | RHEA:17066 | RHEA:17067 | RHEA:17068 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
Reactome help_outline |
Publications
-
Overexpression, purification, and characterization of the thermostable mevalonate kinase from Methanococcus jannaschii.
Huang K.-X., Scott A.I., Bennett G.N.
We report here the first overexpression and characterization of a thermostable mevalonate kinase from an archae, Methanococcus jannaschii, a strict anaerobe, which produces methane and grows at pressure of 200 atm and an optimum temperature near 85 degrees C. PCR-derived DNA fragments containing t ... >> More
We report here the first overexpression and characterization of a thermostable mevalonate kinase from an archae, Methanococcus jannaschii, a strict anaerobe, which produces methane and grows at pressure of 200 atm and an optimum temperature near 85 degrees C. PCR-derived DNA fragments containing the structural gene for mevalonate kinase were cloned into an expression vector, pET28a, to form pETMVK. The mevalonate kinase was overexpressed from Escherichia coli pETMVK/BL21(DE3) (15-20% of total soluble protein) when induced with isopropyl beta-d-thiogalactopyranoside. The protein was purified by heat treatment (to denature E. coli proteins), followed by metal-affinity chromatography on Talon metal-affinity resin column. The purified protein had a dimeric structure composed of identical subunits, and the M(r) of the enzyme determined by gel chromatography was 68K. Based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the subunit M(r) was 36, 000. The pI for mevalonate kinase was 7.8. The Michaelis constant (K(m)) for (RS)-mevalonate was 68.5 microM and was 92 microM for ATP. The V(max) was 387 units mg(-1). The optimal temperature for mevalonate kinase activity was 70-75 degrees C. << Less
-
Structural Characterization and Functional Analysis of Mevalonate Kinase from <i>Tribolium castaneum</i> (Red Flour Beetle).
Zheng H., Yang Y., Hu Y., Shi J., Li Q., Wang Y., Xia Q., Guo P.
Mevalonate kinase (MevK) is an important enzyme in the mevalonate pathway that catalyzes the phosphorylation of mevalonate into phosphomevalonate and is involved in juvenile hormone biosynthesis. Herein, we present a structure model of MevK from the red flour beetle <i>Tribolium castaneum</i> (<i> ... >> More
Mevalonate kinase (MevK) is an important enzyme in the mevalonate pathway that catalyzes the phosphorylation of mevalonate into phosphomevalonate and is involved in juvenile hormone biosynthesis. Herein, we present a structure model of MevK from the red flour beetle <i>Tribolium castaneum</i> (<i>Tc</i>MevK), which adopts a compact α/β conformation that can be divided into two parts: an N-terminal domain and a C-terminal domain. A narrow, deep cavity accommodating the substrate and cofactor was observed at the junction between the two domains of <i>Tc</i>MevK. Computational simulation combined with site-directed mutagenesis and biochemical analyses allowed us to define the binding mode of <i>Tc</i>MevK to cofactors and substrates. Moreover, <i>Tc</i>MevK showed optimal enzyme activity at pH 8.0 and an optimal temperature of 40 °C for mevalonate as the substrate. The expression profiles and RNA interference of <i>TcMevK</i> indicated its critical role in controlling juvenile hormone biosynthesis, as well as its participation in the production of other terpenoids in <i>T. castaneum</i>. These findings improve our understanding of the structural and biochemical features of insect Mevk and provide a structural basis for the design of MevK inhibitors. << Less
-
Identification of catalytic residues in human mevalonate kinase.
Potter D., Miziorko H.M.
cDNA encoding human mevalonate kinase has been overexpressed and the recombinant enzyme isolated. This stable enzyme is a dimer of 42-kDa subunits and exhibits a Vm = 37 units/mg, Km(ATP) = 74 microM, and Km(DL-MVA) = 24 microM. The sensitivity of enzyme to water-soluble carbodiimide modification ... >> More
cDNA encoding human mevalonate kinase has been overexpressed and the recombinant enzyme isolated. This stable enzyme is a dimer of 42-kDa subunits and exhibits a Vm = 37 units/mg, Km(ATP) = 74 microM, and Km(DL-MVA) = 24 microM. The sensitivity of enzyme to water-soluble carbodiimide modification of carboxyl groups prompted evaluation of four invariant acidic amino acids (Glu-19, Glu-193, Asp-204, and Glu-296) by site-directed mutagenesis. Elimination of Glu-19's carboxyl group (E19A, E19Q) destabilizes the enzyme, whereas E19D is stable but exhibits only approximately 2-fold changes in Vm and Km values. E296Q is a stable enzyme, which exhibits kinetic parameters comparable to those measured for wild-type enzyme. E193A is a labile protein, whereas E193Q is stable, exhibiting >50-fold diminution in Vm and elevated Km values for ATP (approximately 20-fold) and mevalonate (approximately 40-fold). Such effects would be compatible with a role for Glu-193 in interacting with the cation of the MgATP substrate. D204A and D204N are stable enzymes lacking substantial mevalonate kinase activity. The active sites of these Asp-204 mutants are intact, based on their ability to bind a spin-labeled ATP analog with stoichiometries and equilibrium binding constants that are comparable to those determined for wild-type enzyme. Competitive displacement experiments demonstrate that the Asp-204 mutants can bind ATP with Kd values that are comparable to estimates for wild-type enzyme. The >40,000-fold diminution in kcat for the Asp-204 mutants and the demonstration that they contain an otherwise intact active site support assignment of a crucial catalytic role to Asp-204. The assignment of Asp-204 as the catalytic base that facilitates deprotonation of the C-5 hydroxyl of mevalonic acid would be compatible with the experimental observations. << Less
-
Post-translational regulation of mevalonate kinase by intermediates of the cholesterol and nonsterol isoprene biosynthetic pathways.
Hinson D.D., Chambliss K.L., Toth M.J., Tanaka R.D., Gibson K.M.
To assess the potential for feedback inhibition by isoprene intermediates in the cholesterol and nonsterol isoprene biosynthetic pathway, we expressed human cDNAs encoding mevalonate kinase (MKase), phosphomevalonate kinase (PMKase), and mevalonate diphosphate decarboxylase (MDDase) as fusion prot ... >> More
To assess the potential for feedback inhibition by isoprene intermediates in the cholesterol and nonsterol isoprene biosynthetic pathway, we expressed human cDNAs encoding mevalonate kinase (MKase), phosphomevalonate kinase (PMKase), and mevalonate diphosphate decarboxylase (MDDase) as fusion proteins in Escherichia coli DH5alpha, and purified these proteins by affinity chromatography. Several phosphorylated and non-phosphorylated isoprenes were analyzed as inhibitors of the enzymes using a standard spectrophotometric assay. Of the three proteins, only MKase was inhibited through competitive interaction at the ATP-binding site. The intermediates studied (and their relative inhibitory capacity) were: geranylgeranyl-diphosphate (GGPP, C20) > farnesyl-diphosphate (FPP, C15) > geranyl-diphosphate (GPP, C10) > isopentenyl-diphosphate (IPP, C5) > or = 3,3-dimethylallyl-diphosphate (DMAPP, C5) > farnesol (C15) > dolichol-phosphate (DP, C(80-100)). Mevalonate-diphosphate, geraniol, and dolichol were not inhibitors. Our data further define the spectrum of physiologic inhibitors of MKase, and provide the first evidence for feedback inhibition of MKase by a nonsterol isoprene produced by the branched pathway, dolichol-phosphate. These results provide additional evidence that MKase may occupy a central regulatory role in the control of cholesterol and nonsterol isoprene biosynthesis. << Less
J. Lipid Res. 38:2216-2223(1997) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.