Reaction participants Show >> << Hide
- Name help_outline 3-oxoadipate Identifier CHEBI:15775 Charge -2 Formula C6H6O5 InChIKeyhelp_outline RTGHRDFWYQHVFW-UHFFFAOYSA-L SMILEShelp_outline [O-]C(=O)CCC(=O)CC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,186 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline maleylacetate Identifier CHEBI:16468 Charge -2 Formula C6H4O5 InChIKeyhelp_outline SOXXPQLIZIPMIZ-UPHRSURJSA-L SMILEShelp_outline [O-]C(=O)CC(=O)\C=C/C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 7 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,116 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:16981 | RHEA:16982 | RHEA:16983 | RHEA:16984 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Maleylacetate reductase from Trichosporon cutaneum.
Gaal A.B., Neujahr H.Y.
The enzyme catalysing the reduction of maleylacetate to 3-oxoadipate was purified 150-fold from Trichosporon cutaneum, induced for aromatic metabolisms by growth with resorcinol as a major carbon source. The enzyme separated upon electrofocusing into three species with PI values 4.6, 5.1 and 5.6. ... >> More
The enzyme catalysing the reduction of maleylacetate to 3-oxoadipate was purified 150-fold from Trichosporon cutaneum, induced for aromatic metabolisms by growth with resorcinol as a major carbon source. The enzyme separated upon electrofocusing into three species with PI values 4.6, 5.1 and 5.6. They had similar catalytic properties and the same molecular weight. << Less
Biochem J 185:783-786(1980) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Purification and characterization of maleylacetate reductase from Alcaligenes eutrophus JMP134(pJP4).
Seibert V., Stadler-Fritzsche K., Schlomann M.
Maleylacetate reductase (EC 1.3.1.32) plays a major role in the degradation of chloroaromatic compounds by channeling maleylacetate and some of its substituted derivatives into the 3-oxoadipate pathway. The enzyme was purified to apparent homogeneity from an extract of 2,4-dichlorophenoxyacetate ( ... >> More
Maleylacetate reductase (EC 1.3.1.32) plays a major role in the degradation of chloroaromatic compounds by channeling maleylacetate and some of its substituted derivatives into the 3-oxoadipate pathway. The enzyme was purified to apparent homogeneity from an extract of 2,4-dichlorophenoxyacetate (2,4-D)-grown cells of Alcaligenes eutrophus JMP134. Maleylacetate reductase appears to be a dimer of two identical subunits of 35 kDa. The pI was determined to be at pH 5.4. There was no indication of a flavin prosthetic group. The enzyme was inactivated by p-chloromercuribenzoate but not by EDTA, 1,10-phenanthroline, or dithiothreitol. Maleylacetate and 2-chloromaleylacetate were converted with similar efficiencies (with NADH as cosubstrate, Km = 31 microM for each substrate and kcat = 8,785 and 7,280/min, respectively). NADH was preferred to NADPH as the cosubstrate. Upon reduction of 2-chloramaleylacetate by the purified enzyme, chloride was liberated and the resulting maleylacetate was further reduced by a second NADH. These results and the kinetic parameters suggest that the maleylacetate reductase is sufficient to channel the 2,4-D degradation intermediate 2-chloromaleylacetate into the 3-oxoadipate pathway. In a data base search the NH2-terminal sequence of maleylacetate reductase was found to be most similar to that of TfdF, a pJP4-encoded protein of as-yet-unknown function in 2,4-D degradation. << Less
J. Bacteriol. 175:6745-6754(1993) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.