Reaction participants Show >> << Hide
- Name help_outline dTDP-4-dehydro-6-deoxy-α-D-glucose Identifier CHEBI:57649 (Beilstein: 7737591) help_outline Charge -2 Formula C16H22N2O15P2 InChIKeyhelp_outline PSXWNITXWWECNY-UCBTUHGZSA-L SMILEShelp_outline C[C@H]1O[C@H](OP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H](C[C@@H]2O)n2cc(C)c(=O)[nH]c2=O)[C@H](O)[C@@H](O)C1=O 2D coordinates Mol file for the small molecule Search links Involved in 11 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline dTDP-4-dehydro-β-L-rhamnose Identifier CHEBI:62830 Charge -2 Formula C16H22N2O15P2 InChIKeyhelp_outline PSXWNITXWWECNY-LPVGZGSHSA-L SMILEShelp_outline C[C@@H]1O[C@H](OP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H](C[C@@H]2O)n2cc(C)c(=O)[nH]c2=O)[C@H](O)[C@H](O)C1=O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:16969 | RHEA:16970 | RHEA:16971 | RHEA:16972 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
Streptococcal dTDP-L-rhamnose biosynthesis enzymes: functional characterization and lead compound identification.
van der Beek S.L., Zorzoli A., Canak E., Chapman R.N., Lucas K., Meyer B.H., Evangelopoulos D., de Carvalho L.P.S., Boons G.J., Dorfmueller H.C., van Sorge N.M.
Biosynthesis of the nucleotide sugar precursor dTDP-L-rhamnose is critical for the viability and virulence of many human pathogenic bacteria, including Streptococcus pyogenes (Group A Streptococcus; GAS), Streptococcus mutans and Mycobacterium tuberculosis. Streptococcal pathogens require dTDP-L-r ... >> More
Biosynthesis of the nucleotide sugar precursor dTDP-L-rhamnose is critical for the viability and virulence of many human pathogenic bacteria, including Streptococcus pyogenes (Group A Streptococcus; GAS), Streptococcus mutans and Mycobacterium tuberculosis. Streptococcal pathogens require dTDP-L-rhamnose for the production of structurally similar rhamnose polysaccharides in their cell wall. Via heterologous expression in S. mutans, we confirmed that GAS RmlB and RmlC are critical for dTDP-L-rhamnose biosynthesis through their action as dTDP-glucose-4,6-dehydratase and dTDP-4-keto-6-deoxyglucose-3,5-epimerase enzymes respectively. Complementation with GAS RmlB and RmlC containing specific point mutations corroborated the conservation of previous identified catalytic residues. Bio-layer interferometry was used to identify and confirm inhibitory lead compounds that bind to GAS dTDP-rhamnose biosynthesis enzymes RmlB, RmlC and GacA. One of the identified compounds, Ri03, inhibited growth of GAS, other rhamnose-dependent streptococcal pathogens as well as M. tuberculosis with an IC<sub>50</sub> of 120-410 µM. Importantly, we confirmed that Ri03 inhibited dTDP-L-rhamnose formation in a concentration-dependent manner through a biochemical assay with recombinant rhamnose biosynthesis enzymes. We therefore conclude that inhibitors of dTDP-L-rhamnose biosynthesis, such as Ri03, affect streptococcal and mycobacterial viability and can serve as lead compounds for the development of a new class of antibiotics that targets dTDP-rhamnose biosynthesis in pathogenic bacteria. << Less
-
RmlC, a C3' and C5' carbohydrate epimerase, appears to operate via an intermediate with an unusual twist boat conformation.
Dong C., Major L.L., Srikannathasan V., Errey J.C., Giraud M.F., Lam J.S., Graninger M., Messner P., McNeil M.R., Field R.A., Whitfield C., Naismith J.H.
The striking feature of carbohydrates is their constitutional, conformational and configurational diversity. Biology has harnessed this diversity and manipulates carbohydrate residues in a variety of ways, one of which is epimerization. RmlC catalyzes the epimerization of the C3' and C5' positions ... >> More
The striking feature of carbohydrates is their constitutional, conformational and configurational diversity. Biology has harnessed this diversity and manipulates carbohydrate residues in a variety of ways, one of which is epimerization. RmlC catalyzes the epimerization of the C3' and C5' positions of dTDP-6-deoxy-D-xylo-4-hexulose, forming dTDP-6-deoxy-L-lyxo-4-hexulose. RmlC is the third enzyme of the rhamnose pathway, and represents a validated anti-bacterial drug target. Although several structures of the enzyme have been reported, the mechanism and the nature of the intermediates have remained obscure. Despite its relatively small size (22 kDa), RmlC catalyzes four stereospecific proton transfers and the substrate undergoes a major conformational change during the course of the transformation. Here we report the structure of RmlC from several organisms in complex with product and product mimics. We have probed site-directed mutants by assay and by deuterium exchange. The combination of structural and biochemical data has allowed us to assign key residues and identify the conformation of the carbohydrate during turnover. Clear knowledge of the chemical structure of RmlC reaction intermediates may offer new opportunities for rational drug design. << Less
-
Biological mechanisms involved in the formation of deoxy sugars. VII. Biosynthesis of 6-deoxy-L-talose.
Gaugler R.W., Gabriel O.
J Biol Chem 248:6041-6049(1973) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
A bifunctional 3,5-epimerase/4-keto reductase for nucleotide-rhamnose synthesis in Arabidopsis.
Watt G., Leoff C., Harper A.D., Bar-Peled M.
l-Rhamnose is a component of plant cell wall pectic polysaccharides, diverse secondary metabolites, and some glycoproteins. The biosynthesis of the activated nucleotide-sugar form(s) of rhamnose utilized by the various rhamnosyltransferases is still elusive, and no plant enzymes involved in their ... >> More
l-Rhamnose is a component of plant cell wall pectic polysaccharides, diverse secondary metabolites, and some glycoproteins. The biosynthesis of the activated nucleotide-sugar form(s) of rhamnose utilized by the various rhamnosyltransferases is still elusive, and no plant enzymes involved in their synthesis have been purified. In contrast, two genes (rmlC and rmlD) have been identified in bacteria and shown to encode a 3,5-epimerase and a 4-keto reductase that together convert dTDP-4-keto-6-deoxy-Glc to dTDP-beta-l-rhamnose. We have identified an Arabidopsis cDNA that contains domains that share similarity to both reductase and epimerase. The Arabidopsis gene encodes a protein with a predicated molecular mass of approximately 33.5 kD that is transcribed in all tissue examined. The Arabidopsis protein expressed in, and purified from, Escherichia coli converts dTDP-4-keto-6-deoxy-Glc to dTDP-beta-l-rhamnose in the presence of NADPH. These results suggest that a single plant enzyme has both the 3,5-epimerase and 4-keto reductase activities. The enzyme has maximum activity between pH 5.5 and 7.5 at 30 degrees C. The apparent K(m) for NADPH is 90 microm and 16.9 microm for dTDP-4-keto-6-deoxy-Glc. The Arabidopsis enzyme can also form UDP-beta-l-rhamnose. To our knowledge, this is the first example of a bifunctional plant enzyme involved in sugar nucleotide synthesis where a single polypeptide exhibits the same activities as two separate prokaryotic enzymes. << Less
Plant Physiol. 134:1337-1346(2004) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Crystal structure of dTDP-4-keto-6-deoxy-D-hexulose 3,5-epimerase from Methanobacterium thermoautotrophicum complexed with dTDP.
Christendat D., Saridakis V., Dharamsi A., Bochkarev A., Pai E.F., Arrowsmith C.H., Edwards A.M.
Deoxythymidine diphosphate (dTDP)-4-keto-6-deoxy-d-hexulose 3, 5-epimerase (RmlC) is involved in the biosynthesis of dTDP-l-rhamnose, which is an essential component of the bacterial cell wall. The crystal structure of RmlC from Methanobacterium thermoautotrophicum was determined in the presence a ... >> More
Deoxythymidine diphosphate (dTDP)-4-keto-6-deoxy-d-hexulose 3, 5-epimerase (RmlC) is involved in the biosynthesis of dTDP-l-rhamnose, which is an essential component of the bacterial cell wall. The crystal structure of RmlC from Methanobacterium thermoautotrophicum was determined in the presence and absence of dTDP, a substrate analogue. RmlC is a homodimer comprising a central jelly roll motif, which extends in two directions into longer beta-sheets. Binding of dTDP is stabilized by ionic interactions to the phosphate group and by a combination of ionic and hydrophobic interactions with the base. The active site, which is located in the center of the jelly roll, is formed by residues that are conserved in all known RmlC sequence homologues. The conservation of the active site residues suggests that the mechanism of action is also conserved and that the RmlC structure may be useful in guiding the design of antibacterial drugs. << Less
-
The mechanism of 6-deoxyhexose synthesis. II. Conversion of deoxythymidine diphosphate 4-keto-6-deoxy-D-glucose to deoxythymidine diphosphate L-rhamnose.
Melo A., Glaser L.