Enzymes
UniProtKB help_outline | 1,525 proteins |
Reaction participants Show >> << Hide
- Name help_outline choloyl-CoA Identifier CHEBI:57373 Charge -4 Formula C45H70N7O20P3S InChIKeyhelp_outline ZKWNOTQHFKYUNU-JGCIYWTLSA-J SMILEShelp_outline [H][C@@](C)(CCC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@]1([H])CC[C@@]2([H])[C@]3([H])[C@H](O)C[C@]4([H])C[C@H](O)CC[C@]4(C)[C@@]3([H])C[C@H](O)[C@]12C 2D coordinates Mol file for the small molecule Search links Involved in 10 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline propanoyl-CoA Identifier CHEBI:57392 Charge -4 Formula C24H36N7O17P3S InChIKeyhelp_outline QAQREVBBADEHPA-IEXPHMLFSA-J SMILEShelp_outline CCC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 44 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 3α,7α,12α-trihydroxy-24-oxo-5β-cholestan-26-oyl-CoA Identifier CHEBI:58507 Charge -4 Formula C48H74N7O21P3S InChIKeyhelp_outline AWLXQJGPNLCTLM-YFXOTMPNSA-J SMILEShelp_outline [H][C@@](C)(CCC(=O)C(C)C(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@]1([H])CC[C@@]2([H])[C@]3([H])[C@H](O)C[C@]4([H])C[C@H](O)CC[C@]4(C)[C@@]3([H])C[C@H](O)[C@]12C 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,500 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:16865 | RHEA:16866 | RHEA:16867 | RHEA:16868 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
Reactome help_outline |
Publications
-
A second isoform of 3-ketoacyl-CoA thiolase found in Caenorhabditis elegans which is similar to sterol carrier protein x but lacks the sequence of sterol carrier protein 2.
Bun-ya M., Maebuchi M., Hashimoto T., Yokota S., Kamiryo T.
We cloned a full-length cDNA of the nematode Caenorhabditis elegans that encodes a 44-kDa protein (P-44, 412 residues) similar to sterol carrier protein x (SCPx). Mammalian SCPx is a bipartite protein: its 404-residue N-terminal and 143-residue C-terminal domains are similar to 3-ketoacyl-CoA thio ... >> More
We cloned a full-length cDNA of the nematode Caenorhabditis elegans that encodes a 44-kDa protein (P-44, 412 residues) similar to sterol carrier protein x (SCPx). Mammalian SCPx is a bipartite protein: its 404-residue N-terminal and 143-residue C-terminal domains are similar to 3-ketoacyl-CoA thiolase and identical to the precursor of sterol carrier protein 2 (SCP2; also termed non-specific lipid-transfer protein), respectively. P-44 has 56% sequence identity to the thiolase domain of SCPx but lacks the SCP2 sequence. Northern blot analysis revealed only a single mRNA species of 1.4 kb, which agrees well with the length of the cDNA (1371 bp), making it improbable that alternative splicing produces an SCPx-like fusion protein. The sequence similarities of P-44 to conventional thiolases are lesser than that to SCPx. Purified recombinant P-44 cleaved long-chain 3-ketoacyl-CoAs (C(8-16)) in a thiolytic manner by the ping-pong bi-bi reaction mechanism. The inhibition of P-44 by acetyl-CoA was competitive with CoA and non-competitive with 3-ketooctanoyl-CoA. This pattern of inhibition is shared with SCPx but not with conventional 3-ketoacyl-CoA thiolase, which is inhibited uncompetitively with respect to 3-ketoacyl-CoA. From these results, we concluded that nematode P-44 and mammalian SCPx constitute a second isoform of thiolase, which we propose to term type-II 3-ketoacyl-CoA thiolase. << Less
-
Formation of cholic acid from 3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholestanoic acid by rat liver peroxisomes.
Kase F., Bjorkhem I., Pedersen J.I.
In a previous study, it was shown that the peroxisomal fraction of rat liver, isolated by Percoll gradient centrifugation of a light mitochondrial fraction, was able to catalyze conversion of 3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholestanoic acid (THCA) into cholic acid (Pedersen, J. I., a ... >> More
In a previous study, it was shown that the peroxisomal fraction of rat liver, isolated by Percoll gradient centrifugation of a light mitochondrial fraction, was able to catalyze conversion of 3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholestanoic acid (THCA) into cholic acid (Pedersen, J. I., and J. Gustafsson, 1980. FEBS Lett. 121: 345-348). In the present work, this peroxisomal THCA-oxidizing system has been studied in more detail. The peroxisomes were prepared by sucrose gradient centrifugation. By use of different marker enzymes, it was confirmed that the major part of the activity in the light mitochondrial fraction was located in the peroxisomes. The reaction was absolutely dependent on the presence of Mg2+, CoA, ATP, and NAD+ in the reaction medium. In addition to cholic acid, small amounts of 3 alpha, 7 alpha, 12 alpha, 24-tetrahydroxy-5 beta-cholestanoic acid were detected as product. Provided the peroxisomes were preincubated with ATP and CoA, the reaction was linear with time up to 75 min. It was linear with peroxisomal protein and the pH optimum was 8. The reaction was stimulated by FAD (ca. 50%), by cytosolic protein (about twofold), by microsomal protein (about twofold), bovine serum albumin (about sevenfold), and by KCN (75% at 1 mM). In the absence of bovine serum albumin in the medium the K'm for the overall reaction was 1.4 X 10(-6) M and the maximum rate was 4.3 nmol X mg-1 X hr-1. In the presence of bovine serum albumin, the K'm increased to 6.3 X 10(-6) M and the maximum rate to about 32 nmol X mg-1 X hr-1.(ABSTRACT TRUNCATED AT 250 WORDS) << Less
-
The enzymes, regulation, and genetics of bile acid synthesis.
Russell D.W.
The synthesis and excretion of bile acids comprise the major pathway of cholesterol catabolism in mammals. Synthesis provides a direct means of converting cholesterol, which is both hydrophobic and insoluble, into a water-soluble and readily excreted molecule, the bile acid. The biosynthetic steps ... >> More
The synthesis and excretion of bile acids comprise the major pathway of cholesterol catabolism in mammals. Synthesis provides a direct means of converting cholesterol, which is both hydrophobic and insoluble, into a water-soluble and readily excreted molecule, the bile acid. The biosynthetic steps that accomplish this transformation also confer detergent properties to the bile acid, which are exploited by the body to facilitate the secretion of cholesterol from the liver. This role in the elimination of cholesterol is counterbalanced by the ability of bile acids to solubilize dietary cholesterol and essential nutrients and to promote their delivery to the liver. The synthesis of a full complement of bile acids requires 17 enzymes. The expression of selected enzymes in the pathway is tightly regulated by nuclear hormone receptors and other transcription factors, which ensure a constant supply of bile acids in an ever changing metabolic environment. Inherited mutations that impair bile acid synthesis cause a spectrum of human disease; this ranges from liver failure in early childhood to progressive neuropathy in adults. << Less
Annu. Rev. Biochem. 72:137-174(2003) [PubMed] [EuropePMC]
This publication is cited by 13 other entries.
-
Peroxisomal fatty acid oxidation disorders and 58 kDa sterol carrier protein X (SCPx). Activity measurements in liver and fibroblasts using a newly developed method.
Ferdinandusse S., Denis S., van Berkel E., Dacremont G., Wanders R.J.
Sterol carrier protein X (SCPx) plays a crucial role in the peroxisomal oxidation of branched-chain fatty acids. To investigate whether patients with an unresolved defect in peroxisomal beta-oxidation are deficient for SCPx, we developed a novel and specific assay to measure the activity of SCPx i ... >> More
Sterol carrier protein X (SCPx) plays a crucial role in the peroxisomal oxidation of branched-chain fatty acids. To investigate whether patients with an unresolved defect in peroxisomal beta-oxidation are deficient for SCPx, we developed a novel and specific assay to measure the activity of SCPx in both liver and fibroblast homogenates. The substrate used in the assay, 3alpha, 7alpha,12alpha-trihydroxy-24-keto-5beta-cholestanoy l-CoA (24-keto-THC-CoA), is produced by preincubating the enoyl-CoA of the bile acid intermediate THCA with a lysate from the yeast Saccharomyces cerevisiae expressing human D-bifunctional protein. After the preincubation period, liver or fibroblast homogenate is added plus CoASH, and the production of choloyl-CoA is determined by HPLC. The specificity of the assay was demonstrated by the finding of a full deficiency in fibroblasts from an SCPx knock-out mouse. In addition to SCPx activity measurements in fibroblasts from patients with a defect in peroxisomal beta-oxidation of unresolved etiology, we studied the stability and activity of SCPx in fibroblasts from patients with Zellweger syndrome, which lack functional peroxisomes. We found that SCPx is not only stable in the cytosol, but displays a higher activity in fibroblasts from patients with Zellweger syndrome than in control fibroblasts. Furthermore, in all patients studied with a defect in peroxisomal beta-oxidation of unknown origin, SCPx was found to be normally active, indicating that human SCPx deficiency remains to be identified. << Less
J. Lipid Res. 41:336-342(2000) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Glycine and taurine conjugation of bile acids by a single enzyme. Molecular cloning and expression of human liver bile acid CoA:amino acid N-acyltransferase.
Falany C.N., Johnson M.R., Barnes S., Diasio R.B.
In order to establish whether a single enzyme in human liver was capable of conjugating bile acids with both glycine and taurine, a cDNA encoding human liver bile acid-CoA:amino acid N-acyltransferase (hBAT) has been isolated and characterized. A specific immunoaffinity-purified rabbit anti-hBAT p ... >> More
In order to establish whether a single enzyme in human liver was capable of conjugating bile acids with both glycine and taurine, a cDNA encoding human liver bile acid-CoA:amino acid N-acyltransferase (hBAT) has been isolated and characterized. A specific immunoaffinity-purified rabbit anti-hBAT polyclonal antibody was used to screen a lambda Zap XR human liver cDNA library resulting in the isolation of two unique clones. hBAT8 and hBAT9 (1669 and 1491 base pairs in length, respectively) were isolated following screening of 4 x 10(5) clones of the cDNA library. Restriction mapping and sequence analysis demonstrated that the cDNAs were identical except hBAT8 contained an additional 178 bases of 5' sequence; hBAT8 was completely sequenced, characterized, and used for all subsequent studies. hBAT8 consisted of a 184-nucleotide 5'-nontranslated region, an open reading frame of 1,254 bases predicting a protein of 418 amino acids with a molecular mass of 46,296 Da, and a 3'-nontranslated region of 209 nucleotides followed by a poly(A)+ tail. The identity of the cDNA was confirmed by the following findings: 1) the open reading frame began with an ATG codon and was followed by a nucleotide sequence which, when translated, corresponded exactly to the first 17 NH2-terminal amino acids of purified human liver BAT; 2) cytosol of Escherichia coli XL1-Blue cells transfected with hBAT8 subcloned into an expression vector, pKK233-2, demonstrated significant enzymatic activity for the conjugation of both taurine and glycine with cholic acid; 3) bacterial expression of hBAT8 generated a protein that comigrated with hBAT from human liver during SDS-polyacrylamide gel electrophoresis and cross-reacted with a specific polyclonal rabbit anti-hBAT antibody during immunoblot analysis; 4) kinetic characteristics of the expressed enzyme were very similar to those reported for purified liver BAT. These data demonstrate that a single cDNA is present in human liver which codes for a protein capable of catalyzing the conjugation of cholic acid with both glycine and taurine. << Less
J. Biol. Chem. 269:19375-19379(1994) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Conversion of 3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholestanoic acid into cholic acid by rat liver peroxisomes.
Pedersen J.I., Gustafsson J.
-
Substrate specificities of 3-oxoacyl-CoA thiolase A and sterol carrier protein 2/3-oxoacyl-CoA thiolase purified from normal rat liver peroxisomes. Sterol carrier protein 2/3-oxoacyl-CoA thiolase is involved in the metabolism of 2-methyl-branched fatty acids and bile acid intermediates.
Antonenkov V.D., Van Veldhoven P.P., Waelkens E., Mannaerts G.P.
The two main thiolase activities present in isolated peroxisomes from normal rat liver were purified to near homogeneity. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the first enzyme preparation displayed a single band of 41 kDa that was identified as 3-oxoacyl-CoA thiolase A (th ... >> More
The two main thiolase activities present in isolated peroxisomes from normal rat liver were purified to near homogeneity. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the first enzyme preparation displayed a single band of 41 kDa that was identified as 3-oxoacyl-CoA thiolase A (thiolase A) by N-terminal amino acid sequencing. The second enzyme preparation consisted of a 58- and a 46-kDa band. The 58-kDa polypeptide reacted with antibodies raised against either sterol carrier protein 2 or the thiolase domain of sterol carrier protein 2/3-oxoacyl-CoA thiolase (SCP-2/thiolase), formerly also called sterol carrier protein X, whereas the 46-kDa polypeptide reacted only with the antibodies raised against the thiolase domain. Internal peptide sequencing confirmed that the 58-kDa polypeptide is SCP-2/thiolase and that the 46-kDa polypeptide is the thiolase domain of SCP-2/thiolase. Thiolase A catalyzed the cleavage of short, medium, and long straight chain 3-oxoacyl-CoAs, medium chain 3-oxoacyl-CoAs being the best substrates. The enzyme was inactive with the 2-methyl-branched 3-oxo-2-methylpalmitoyl-CoA and with the bile acid intermediate 24-oxo-trihydroxycoprostanoyl-CoA. SCP-2/thiolase was active with medium and long straight chain 3-oxoacyl-CoAs but also with the 2-methyl-branched 3-oxoacyl-CoA and the bile acid intermediate. In peroxisomal extracts, more than 90% of the thiolase activity toward straight chain 3-oxoacyl-CoAs was associated with thiolase A. Kinetic parameters (Km and Vmax) were determined for each enzyme with the different substrates. Our results indicate the following: 1) the two (main) thiolases present in peroxisomes from normal rat liver are thiolase A and SCP-2/thiolase; 2) thiolase A is responsible for the thiolytic cleavage of straight chain 3-oxoacyl-CoAs; and 3) SCP-2/thiolase is responsible for the thiolytic cleavage of the 3-oxoacyl-CoA derivatives of 2-methyl-branched fatty acids and the side chain of cholesterol. << Less
J. Biol. Chem. 272:26023-26031(1997) [PubMed] [EuropePMC]
This publication is cited by 9 other entries.