Enzymes
UniProtKB help_outline | 4 proteins |
Reaction participants Show >> << Hide
- Name help_outline N-[(R)-4-phosphopantothenoyl]-L-cysteine Identifier CHEBI:59458 Charge -3 Formula C12H20N2O9PS InChIKeyhelp_outline XQYALQVLCNHCFT-CBAPKCEASA-K SMILEShelp_outline CC(C)(COP([O-])([O-])=O)[C@@H](O)C(=O)NCCC(=O)N[C@@H](CS)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (R)-4'-phosphopantetheine Identifier CHEBI:61723 Charge -2 Formula C11H21N2O7PS InChIKeyhelp_outline JDMUPRLRUUMCTL-VIFPVBQESA-L SMILEShelp_outline CC(C)(COP([O-])([O-])=O)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 8 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CO2 Identifier CHEBI:16526 (CAS: 124-38-9) help_outline Charge 0 Formula CO2 InChIKeyhelp_outline CURLTUGMZLYLDI-UHFFFAOYSA-N SMILEShelp_outline O=C=O 2D coordinates Mol file for the small molecule Search links Involved in 1,006 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:16793 | RHEA:16794 | RHEA:16795 | RHEA:16796 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline | ||||
Reactome help_outline |
Publications
-
Identification of dephospho-coenzyme A (dephospho-CoA) kinase in Thermococcus kodakarensis and elucidation of the entire CoA biosynthesis pathway in archaea.
Shimosaka T., Makarova K.S., Koonin E.V., Atomi H.
Dephospho-coenzyme A (dephospho-CoA) kinase (DPCK) catalyzes the ATP-dependent phosphorylation of dephospho-CoA, the final step in coenzyme A (CoA) biosynthesis. DPCK has been identified and characterized in bacteria and eukaryotes but not in archaea. The hyperthermophilic archaeon <i>Thermococcus ... >> More
Dephospho-coenzyme A (dephospho-CoA) kinase (DPCK) catalyzes the ATP-dependent phosphorylation of dephospho-CoA, the final step in coenzyme A (CoA) biosynthesis. DPCK has been identified and characterized in bacteria and eukaryotes but not in archaea. The hyperthermophilic archaeon <i>Thermococcus kodakarensis</i> encodes two homologs of bacterial DPCK and the DPCK domain of eukaryotic CoA synthase, TK1334 and TK2192. We purified the recombinant TK1334 and TK2192 proteins and found that they lacked DPCK activity. Bioinformatic analyses showed that, in several archaea, the uncharacterized gene from arCOG04076 protein is fused with the gene for phosphopantetheine adenylyltransferase (PPAT), which catalyzes the reaction upstream of the DPCK reaction in CoA biosynthesis. This observation suggested that members of arCOG04076, both fused to PPAT and standalone, could be the missing archaeal DPCKs. We purified the recombinant TK1697 protein, a standalone member of arCOG04076 from <i>T. kodakarensis</i>, and demonstrated its GTP-dependent DPCK activity. Disruption of the TK1697 resulted in CoA auxotrophy, indicating that TK1697 encodes a DPCK that contributes to CoA biosynthesis in <i>T. kodakarensis</i> TK1697 homologs are widely distributed in archaea, suggesting that the arCOG04076 protein represents a novel family of DPCK that is not homologous to bacterial and eukaryotic DPCKs but is distantly related to bacterial and eukaryotic thiamine pyrophosphokinases. We also constructed and characterized gene disruption strains of TK0517 and TK2128, homologs of bifunctional phosphopantothenoylcysteine synthetase-phosphopantothenoylcysteine decarboxylase and PPAT, respectively. Both strains displayed CoA auxotrophy, indicating their contribution to CoA biosynthesis. Taken together with previous studies, the results experimentally validate the entire CoA biosynthesis pathway in <i>T. kodakarensis</i><b>IMPORTANCE</b> CoA is utilized in a wide range of metabolic pathways, and its biosynthesis is essential for all life. Pathways for CoA biosynthesis in bacteria and eukaryotes have been established. In archaea, however, the enzyme that catalyzes the final step in CoA biosynthesis, dephospho-CoA kinase (DPCK), had not been identified. In the present study, bioinformatic analyses identified a candidate for the DPCK in archaea, which was biochemically and genetically confirmed in the hyperthermophilic archaeon <i>Thermococcus kodakarensis</i> Genetic analyses on genes presumed to encode bifunctional phosphopantothenoylcysteine synthetase-phosphopantothenoylcysteine decarboxylase and phosphopantetheine adenylyltransferase confirmed their involvement in CoA biosynthesis. Taken together with previous studies, the results reveal the entire pathway for CoA biosynthesis in a single archaeon and provide insight into the different mechanisms of CoA biosynthesis and their distribution in nature. << Less
MBio 10:E01146-E01146(2019) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
Molecular characterization of lantibiotic-synthesizing enzyme EpiD reveals a function for bacterial Dfp proteins in coenzyme A biosynthesis.
Kupke T., Uebele M., Schmid D., Jung G., Blaesse M., Steinbacher S.
The lantibiotic-synthesizing flavoprotein EpiD catalyzes the oxidative decarboxylation of peptidylcysteines to peptidyl-aminoenethiols. The sequence motif responsible for flavin coenzyme binding and enzyme activity is conserved in different proteins from all kingdoms of life. Dfp proteins of eubac ... >> More
The lantibiotic-synthesizing flavoprotein EpiD catalyzes the oxidative decarboxylation of peptidylcysteines to peptidyl-aminoenethiols. The sequence motif responsible for flavin coenzyme binding and enzyme activity is conserved in different proteins from all kingdoms of life. Dfp proteins of eubacteria and archaebacteria and salt tolerance proteins of yeasts and plants belong to this new family of flavoproteins. The enzymatic function of all these proteins was not known, but our experiments suggested that they catalyze a similar reaction like EpiD and/or may have similar substrates and are homododecameric flavoproteins. We demonstrate that the N-terminal domain of the Escherichia coli Dfp protein catalyzes the decarboxylation of (R)-4'-phospho-N-pantothenoylcysteine to 4'-phosphopantetheine. This reaction is essential for coenzyme A biosynthesis. << Less
-
The metabolism of pantothenic acid.
BROWN G.M.
J Biol Chem 234:370-378(1959) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.