Reaction participants Show >> << Hide
- Name help_outline a fatty acyl-CoA Identifier CHEBI:77636 Charge -4 Formula C22H31N7O17P3SR SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCSC([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,288 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a fatty acid Identifier CHEBI:28868 Charge -1 Formula CO2R SMILEShelp_outline [O-]C([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,526 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,500 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:16781 | RHEA:16782 | RHEA:16783 | RHEA:16784 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Related reactions help_outline
Specific form(s) of this reaction
More general form(s) of this reaction
Publications
-
Analysis of the mouse and human acyl-CoA thioesterase (ACOT) gene clusters shows that convergent, functional evolution results in a reduced number of human peroxisomal ACOTs.
Hunt M.C., Rautanen A., Westin M.A.K., Svensson L.T., Alexson S.E.H.
The maintenance of cellular levels of free fatty acids and acyl-CoAs, the activated form of free fatty acids, is extremely important, as imbalances in lipid metabolism have serious consequences for human health. Acyl-coenzyme A (CoA) thioesterases (ACOTs) hydrolyze acyl-CoAs to the free fatty acid ... >> More
The maintenance of cellular levels of free fatty acids and acyl-CoAs, the activated form of free fatty acids, is extremely important, as imbalances in lipid metabolism have serious consequences for human health. Acyl-coenzyme A (CoA) thioesterases (ACOTs) hydrolyze acyl-CoAs to the free fatty acid and CoASH, and thereby have the potential to regulate intracellular levels of these compounds. We previously identified and characterized a mouse ACOT gene cluster comprised of six genes that apparently arose by gene duplications encoding acyl-CoA thioesterases with localizations in cytosol (ACOT1), mitochondria (ACOT2), and peroxisomes (ACOT3-6). However, the corresponding human gene cluster contains only three genes (ACOT1, ACOT2, and ACOT4) coding for full-length thioesterase proteins, of which only one is peroxisomal (ACOT4). We therefore set out to characterize the human genes, and we show here that the human ACOT4 protein catalyzes the activities of three mouse peroxisomal ACOTs (ACOT3, 4, and 5), being active on succinyl-CoA and medium to long chain acyl-CoAs, while ACOT1 and ACOT2 carry out similar functions to the corresponding mouse genes. These data strongly suggest that the human ACOT4 gene has acquired the functions of three mouse genes by a functional convergent evolution that also provides an explanation for the unexpectedly low number of human genes. << Less
FASEB J. 20:1855-1864(2006) [PubMed] [EuropePMC]
This publication is cited by 13 other entries.
-
Peroxisome proliferator-induced acyl-CoA thioesterase from rat liver cytosol: molecular cloning and functional expression in Chinese hamster ovary cells.
Engberg S.T., Aoyama T., Alexson S.E.H., Hashimoto T., Svensson L.T.
We have isolated and cloned a cDNA that codes for one of the peroxisome proliferator-induced acyl-CoA thioesterases of rat liver. The deduced amino acid sequence corresponds to the major induced isoform in cytosol. Analysis and comparison of the deduced amino acid sequence with the established con ... >> More
We have isolated and cloned a cDNA that codes for one of the peroxisome proliferator-induced acyl-CoA thioesterases of rat liver. The deduced amino acid sequence corresponds to the major induced isoform in cytosol. Analysis and comparison of the deduced amino acid sequence with the established consensus sequences suggested that this enzyme represents a novel kind of esterase with an incomplete lipase serine active site motif. Analyses of mRNA and its expression indicated that the enzyme is significantly expressed in liver only after peroxisome proliferator treatment, but isoenzymes are constitutively expressed at high levels in testis and brain. The reported cDNA sequence is highly homologous to the recently cloned brain acyl-CoA thioesterase [Broustas, Larkins, Uhler and Hajra (1996) J. Biol. Chem. 271, 10470-10476], but subtle differences throughout the sequence, and distinct differences close to the resulting C-termini, suggest that they are different enzymes, regulated in different manners. A full-length cDNA clone was expressed in Chinese hamster ovary cells and the expressed enzyme was characterized. The palmitoyl-CoA hydrolysing activity (Vmax) was induced approx. 9-fold to 1 micromol/min per mg of cell protein, which was estimated to correspond to a specific activity of 250 micromol/min per mg of cDNA-expressed enzyme. Both the specific activity and the acyl-CoA chain length specificity were very similar to those of the purified rat liver enzyme. << Less
Biochem. J. 323:525-531(1997) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.
-
Purification and properties of long-chain acyl-CoA hydrolases from the liver cytosol of rats treated with peroxisome proliferator.
Yamada J., Matsumoto I., Furihata T., Sakuma M., Suga T.
Two long-chain acyl-CoA hydrolases, referred to as ACH1 and ACH2, were purified from the liver cytosol of rats fed a diet containing di(2-ethylhexyl)phthalate, a peroxisome proliferator. The molecular mass of ACH1 was estimated to be 73 kDa by gel filtration, and that of the subunits, 36 kDa by so ... >> More
Two long-chain acyl-CoA hydrolases, referred to as ACH1 and ACH2, were purified from the liver cytosol of rats fed a diet containing di(2-ethylhexyl)phthalate, a peroxisome proliferator. The molecular mass of ACH1 was estimated to be 73 kDa by gel filtration, and that of the subunits, 36 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The corresponding values of ACH2 were 42 and 43 kDa, respectively. Both enzymes were active toward fatty acyl-CoAs with chain-lengths of C12-16, but ACH1 had relatively broad specificity as acyl-CoAs with C8-18 were good substrates. A marked difference in their catalytic properties was found in the maximal velocity; for palmitoyl-CoA, 553 and 4.23 mumol/min/mg with Km values of 5.9 and 5.4 microM for ACH1 and ACH2, respectively. ACH2 underwent severe substrate inhibition with high concentrations of long-chain acyl-CoAs, whereas ACH1 did not. Examination with various reagents including divalent cations, sulfhydryl-blocking reagent, nucleotides, and hypolipidemic drugs, characterized ACH1 and ACH2 with several properties distinct from those of mitochondrial and microsomal hydrolases. ACH1 and ACH2 were also discernible in that the former, but not the latter, was inhibited by ATP. In the liver cytosol of rats treated with di(2-ethylhexyl)phthalate, about 90% of palmitoyl-CoA hydrolase activity was titrated with anti-ACH1 and anti-ACH2 antibodies. Immunoblot analysis suggested the presence of the enzymes also in extrahepatic tissues, especially in the brain and testis (ACH1), and in the heart and kidney (ACH2). << Less
Arch. Biochem. Biophys. 308:118-125(1994) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.
-
Molecular cloning and characterization of two mouse peroxisome proliferator-activated receptor alpha (PPARalpha)-regulated peroxisomal acyl-CoA thioesterases.
Westin M.A.K., Alexson S.E.H., Hunt M.C.
Peroxisomes are organelles that function in the beta-oxidation of long- and very long-chain acyl-CoAs, bile acid-CoA intermediates, prostaglandins, leukotrienes, thromboxanes, dicarboxylic fatty acids, pristanic acid, and xenobiotic carboxylic acids. The very long- and long-chain acyl-CoAs are mai ... >> More
Peroxisomes are organelles that function in the beta-oxidation of long- and very long-chain acyl-CoAs, bile acid-CoA intermediates, prostaglandins, leukotrienes, thromboxanes, dicarboxylic fatty acids, pristanic acid, and xenobiotic carboxylic acids. The very long- and long-chain acyl-CoAs are mainly chain-shortened and then transported to mitochondria for further metabolism. We have now identified and characterized two peroxisomal acyl-CoA thioesterases, named PTE-Ia and PTE-Ic, that hydrolyze acyl-CoAs to the free fatty acid and coenzyme A. PTE-Ia and PTE-Ic show 82% sequence identity at the amino acid level, and a putative peroxisomal type 1 targeting signal of -AKL was identified at the carboxyl-terminal end of both proteins. Localization experiments using green fluorescent fusion protein showed PTE-Ia and PTE-Ic to be localized in peroxisomes. Despite their high level of sequence identity, we show that PTE-Ia is mainly active on long-chain acyl-CoAs, whereas PTE-Ic is mainly active on medium-chain acyl-CoAs. Lack of regulation of enzyme activity by free CoASH suggests that PTE-Ia and PTE-Ic regulate intraperoxisomal levels of acyl-CoA, and they may have a function in termination of beta-oxidation of fatty acids of different chain lengths. Tissue expression studies revealed that PTE-Ia is highly expressed in kidney, whereas PTE-Ic is most highly expressed in spleen, brain, testis, and proximal and distal intestine. Both PTE-Ia and PTE-Ic were highly up-regulated in mouse liver by treatment with the peroxisome proliferator WY-14,643 and by fasting in a peroxisome proliferator-activated receptor alpha-dependent manner. These data show that PTE-Ia and PTE-Ic have different functions based on different substrate specificities and tissue expression. << Less
J. Biol. Chem. 279:21841-21848(2004) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.
-
The Akt C-terminal modulator protein is an acyl-CoA thioesterase of the Hotdog-Fold family.
Zhao H., Martin B.M., Bisoffi M., Dunaway-Mariano D.
Herein, we report on an in vitro kinetic activity analysis that demonstrates that the protein known as the Akt C-terminal modulator protein is a broad-range, high-activity acyl-CoA thioesterase. In vitro tests of possible activity regulation by product inhibition or by Akt1 binding gave negative r ... >> More
Herein, we report on an in vitro kinetic activity analysis that demonstrates that the protein known as the Akt C-terminal modulator protein is a broad-range, high-activity acyl-CoA thioesterase. In vitro tests of possible activity regulation by product inhibition or by Akt1 binding gave negative results. Truncation mutants confined the thioesterase activity to the C-terminal domain, consistent with our threading model. The N-terminal domain of unknown fold and function was found to contribute to solubility. << Less
Biochemistry 48:5507-5509(2009) [PubMed] [EuropePMC]
This publication is cited by 7 other entries.
-
Roles of Ser101, Asp236, and His237 in catalysis of thioesterase II and of the C-terminal region of the enzyme in its interaction with fatty acid synthase.
Tai M.H., Chirala S.S., Wakil S.J.
Thioesterase II (TE II), present in specialized tissues, catalyzes the chain termination and release of medium-chain fatty acids from fatty acid synthase [FAS; acyl-CoA:malonyl-CoA C-acyltransferase (decarboxylating, oxoacyl- and enoyl-reducing and thioester-hydrolyzing), EC 2.3.1.85]. We have exp ... >> More
Thioesterase II (TE II), present in specialized tissues, catalyzes the chain termination and release of medium-chain fatty acids from fatty acid synthase [FAS; acyl-CoA:malonyl-CoA C-acyltransferase (decarboxylating, oxoacyl- and enoyl-reducing and thioester-hydrolyzing), EC 2.3.1.85]. We have expressed rat mammary gland TE II in Escherichia coli and created several site-directed mutants. Replacing both Ser101 and His237 with Ala yielded inactive proteins, suggesting that these residues are part of the catalytic triad as in FAS thioesterase (TE I). Mutating the conserved Asp236 or modifying it with Woodward's reagent K caused partial loss (40%) of TE II activity and reduced reactivity of Ser101 and His237 toward their specific inhibitors, phenylmethylsulfonyl fluoride and diethylpyrocarbonate, respectively. These results suggested that Asp236 enhances, but is not essential for, the reactivity of Ser101 and His237. Mutation analyses revealed that, at the C terminus, Leu262 is critical for TE II to interact with FAS. Hydrophobic interactions seem to play a role, since the interaction of TE II with FAS is enhanced by polyethylene glycol but reduced by salt. The Ser101 and His237 mutants and a synthetic C-terminal decapeptide did not compete in the interaction. These results suggest that a TE II-acyl FAS complex forms first, which then is stabilized by the interaction of the hydrophobic C terminus of TE II with FAS, leading ultimately to hydrolysis and release of fatty acid. << Less
Proc. Natl. Acad. Sci. U.S.A. 90:1852-1856(1993) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
Characterization of an acyl-CoA thioesterase that functions as a major regulator of peroxisomal lipid metabolism.
Hunt M.C., Solaas K., Kase B.F., Alexson S.E.H.
Peroxisomes function in beta-oxidation of very long and long-chain fatty acids, dicarboxylic fatty acids, bile acid intermediates, prostaglandins, leukotrienes, thromboxanes, pristanic acid, and xenobiotic carboxylic acids. These lipids are mainly chain-shortened for excretion as the carboxylic ac ... >> More
Peroxisomes function in beta-oxidation of very long and long-chain fatty acids, dicarboxylic fatty acids, bile acid intermediates, prostaglandins, leukotrienes, thromboxanes, pristanic acid, and xenobiotic carboxylic acids. These lipids are mainly chain-shortened for excretion as the carboxylic acids or transported to mitochondria for further metabolism. Several of these carboxylic acids are slowly oxidized and may therefore sequester coenzyme A (CoASH). To prevent CoASH sequestration and to facilitate excretion of chain-shortened carboxylic acids, acyl-CoA thioesterases, which catalyze the hydrolysis of acyl-CoAs to the free acid and CoASH, may play important roles. Here we have cloned and characterized a peroxisomal acyl-CoA thioesterase from mouse, named PTE-2 (peroxisomal acyl-CoA thioesterase 2). PTE-2 is ubiquitously expressed and induced at mRNA level by treatment with the peroxisome proliferator WY-14,643 and fasting. Induction seen by these treatments was dependent on the peroxisome proliferator-activated receptor alpha. Recombinant PTE-2 showed a broad chain length specificity with acyl-CoAs from short- and medium-, to long-chain acyl-CoAs, and other substrates including trihydroxycoprostanoyl-CoA, hydroxymethylglutaryl-CoA, and branched chain acyl-CoAs, all of which are present in peroxisomes. Highest activities were found with the CoA esters of primary bile acids choloyl-CoA and chenodeoxycholoyl-CoA as substrates. PTE-2 activity is inhibited by free CoASH, suggesting that intraperoxisomal free CoASH levels regulate the activity of this enzyme. The acyl-CoA specificity of recombinant PTE-2 closely resembles that of purified mouse liver peroxisomes, suggesting that PTE-2 is the major acyl-CoA thioesterase in peroxisomes. Addition of recombinant PTE-2 to incubations containing isolated mouse liver peroxisomes strongly inhibited bile acid-CoA:amino acid N-acyltransferase activity, suggesting that this thioesterase can interfere with CoASH-dependent pathways. We propose that PTE-2 functions as a key regulator of peroxisomal lipid metabolism. << Less
J. Biol. Chem. 277:1128-1138(2002) [PubMed] [EuropePMC]
This publication is cited by 22 other entries.