Reaction participants Show >> << Hide
- Name help_outline chlorohydroquinone Identifier CHEBI:27675 (CAS: 615-67-8) help_outline Charge 0 Formula C6H5ClO2 InChIKeyhelp_outline AJPXTSMULZANCB-UHFFFAOYSA-N SMILEShelp_outline Oc1ccc(O)c(Cl)c1 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,709 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 5-chlorocarbonyl-4-hydroxy-penta-2,4-dienoate Identifier CHEBI:140625 Charge -1 Formula C6H4ClO4 InChIKeyhelp_outline IXBJPYLKCPOFEX-UHFFFAOYSA-M SMILEShelp_outline O=C(C=C(C=CC([O-])=O)O)Cl 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:16761 | RHEA:16762 | RHEA:16763 | RHEA:16764 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
MetaCyc help_outline |
Publications
-
Cloning and sequencing of a novel meta-cleavage dioxygenase gene whose product is involved in degradation of gamma-hexachlorocyclohexane in Sphingomonas paucimobilis.
Miyauchi K., Adachi Y., Nagata Y., Takagi M.
Sphingomonas (formerly Pseudomonas) paucimobilis UT26 utilizes gamma-hexachlorocyclohexane (gamma-HCH), a halogenated organic insecticide, as a sole source of carbon and energy. In a previous study, we showed that gamma-HCH is degraded to chlorohydroquinone (CHQ) and then to hydroquinone (HQ), alt ... >> More
Sphingomonas (formerly Pseudomonas) paucimobilis UT26 utilizes gamma-hexachlorocyclohexane (gamma-HCH), a halogenated organic insecticide, as a sole source of carbon and energy. In a previous study, we showed that gamma-HCH is degraded to chlorohydroquinone (CHQ) and then to hydroquinone (HQ), although the rate of reaction from CHQ to HQ was slow (K. Miyauchi, S. K. Suh, Y. Nagata, and M. Takagi, J. Bacteriol. 180:1354-1359, 1998). In this study, we cloned and characterized a gene, designated linE, which is located upstream of linD and is directly involved in the degradation of CHQ. The LinE protein consists of 321 amino acids, and all of the amino acids which are reported to be essential for the activity of meta-cleavage dioxygenases are conserved in LinE. Escherichia coli overproducing LinE could convert both CHQ and HQ, producing gamma-hydroxymuconic semialdehyde and maleylacetate, respectively, with consumption of O(2) but could not convert catechol, which is one of the major substrates for meta-cleavage dioxygenases. LinE seems to be resistant to the acylchloride, which is the ring cleavage product of CHQ and which seems to react with water to be converted to maleylacetate. These results indicated that LinE is a novel type of meta-cleavage dioxygenase, designated (chloro)hydroquinone 1, 2-dioxygenase, which cleaves aromatic rings with two hydroxyl groups at para positions preferably. This study represents a direct demonstration of a new type of ring cleavage pathway for aromatic compounds, the hydroquinone pathway. << Less
J. Bacteriol. 181:6712-6719(1999) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Identification and characterization of genes involved in the downstream degradation pathway of gamma-hexachlorocyclohexane in Sphingomonas paucimobilis UT26.
Endo R., Kamakura M., Miyauchi K., Fukuda M., Ohtsubo Y., Tsuda M., Nagata Y.
Sphingomonas paucimobilis UT26 utilizes gamma-hexachlorocyclohexane (gamma-HCH) as a sole source of carbon and energy. In our previous study, we cloned and characterized genes that are involved in the conversion of gamma-HCH to maleylacetate (MA) via chlorohydroquinone (CHQ) in UT26. In this study ... >> More
Sphingomonas paucimobilis UT26 utilizes gamma-hexachlorocyclohexane (gamma-HCH) as a sole source of carbon and energy. In our previous study, we cloned and characterized genes that are involved in the conversion of gamma-HCH to maleylacetate (MA) via chlorohydroquinone (CHQ) in UT26. In this study, we identified and characterized an MA reductase gene, designated linF, that is essential for the utilization of gamma-HCH in UT26. A gene named linEb, whose deduced product showed significant identity to LinE (53%), was located close to linF. LinE is a novel type of ring cleavage dioxygenase that catalyzes the conversion of CHQ to MA. LinEb expressed in Escherichia coli transformed CHQ and 2,6-dichlorohydroquinone to MA and 2-chloromaleylacetate, respectively. Our previous and present results indicate that UT26 (i) has two gene clusters for degradation of chlorinated aromatic compounds via hydroquinone-type intermediates and (ii) uses at least parts of both clusters for gamma-HCH utilization. << Less
J. Bacteriol. 187:847-853(2005) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.