Enzymes
UniProtKB help_outline | 5 proteins |
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline squalene Identifier CHEBI:15440 (Beilstein: 1728920; CAS: 111-02-4) help_outline Charge 0 Formula C30H50 InChIKeyhelp_outline YYGNTYWPHWGJRM-AAJYLUCBSA-N SMILEShelp_outline CC(C)=CCC\C(C)=C\CC\C(C)=C\CC\C=C(/C)CC\C=C(/C)CCC=C(C)C 2D coordinates Mol file for the small molecule Search links Involved in 13 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline hopan-22-ol Identifier CHEBI:36484 (Beilstein: 2566100; CAS: 1721-59-1) help_outline Charge 0 Formula C30H52O InChIKeyhelp_outline PNJBOAVCVAVRGR-UDCAXGDQSA-N SMILEShelp_outline [H][C@@]12CC[C@]3(C)[C@]([H])(CC[C@]4([H])[C@@]5(C)CCCC(C)(C)[C@]5([H])CC[C@@]34C)[C@@]1(C)CC[C@@H]2C(C)(C)O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:16561 | RHEA:16562 | RHEA:16563 | RHEA:16564 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Squalene-hopene cyclase: final deprotonation reaction, conformational analysis for the cyclization of (3R,S)-2,3-oxidosqualene and further evidence for the requirement of an isopropylidene moiety both for initiation of the polycyclization cascade and for the formation of the 5-membered E-ring.
Hoshino T., Nakano S., Kondo T., Sato T., Miyoshi A.
To provide insight into the polycyclization mechanism of squalene by squalene-hopene cyclase (SHC) from Alicyclobacilus acidocaldarius, some analogs of nor- and bisnorsqualenes were synthesized including the deuterium-labeled squalenes and incubated with the wild-type SHC, leading to the following ... >> More
To provide insight into the polycyclization mechanism of squalene by squalene-hopene cyclase (SHC) from Alicyclobacilus acidocaldarius, some analogs of nor- and bisnorsqualenes were synthesized including the deuterium-labeled squalenes and incubated with the wild-type SHC, leading to the following inferences. (1) The deprotonation reaction for the introduction of the double bond of the hopene skeleton occurs exclusively from the Z-methyl group on the terminal double bond of squalene. (2) 3R-Oxidosqualene was folded in a boat conformation for the A-ring construction, while the 3S-form was in a chair structure. (3) The terminal two methyl groups are indispensable both for the formation of the 5-membered E-ring of the hopene skeleton and for the initiation of the polycyclization cascade, but the terminal Z-methyl group has a more crucial role for the construction of the 5-membered E-ring than the E-methyl group. (4) Some of the novel terpene skeletons, 36, 37, 39 and 40, were created from the analogs employed in this investigation. << Less
-
Squalene-hopene cyclases.
Siedenburg G., Jendrossek D.
Hopanoids and sterols are members of a large group of cyclic triterpenoic compounds that have important functions in many prokaryotic and eukaryotic organisms. They are biochemically synthesized from linear precursors (squalene, 2,3-oxidosqualene) in only one enzymatic step that is catalyzed by sq ... >> More
Hopanoids and sterols are members of a large group of cyclic triterpenoic compounds that have important functions in many prokaryotic and eukaryotic organisms. They are biochemically synthesized from linear precursors (squalene, 2,3-oxidosqualene) in only one enzymatic step that is catalyzed by squalene-hopene cyclase (SHC) or oxidosqualene cyclase (OSC). SHCs and OSCs are related in amino acid sequences and probably are derived from a common ancestor. The SHC reaction requires the formation of five ring structures, 13 covalent bonds, and nine stereo centers and therefore is one of the most complex one-step enzymatic reactions. We summarize the knowledge of the properties of triterpene cyclases and details of the reaction mechanism of Alicyclobacillus acidocaldarius SHC. Properties of other SHCs are included. << Less
Appl Environ Microbiol 77:3905-3915(2011) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Site-directed mutagenesis experiments on the putative deprotonation site of squalene-hopene cyclase from Alicyclobacillus acidocaldarius.
Sato T., Kouda M., Hoshino T.
To provide insight into the catalytic mechanism for the final deprotonation reaction of squalene-hopene cyclase (SHC) from Alicyclobacillus acidocaldarius, mutagenesis experiments were conducted for the following ten residues: Thr41, Glu45, Glu93, Arg127, Trp133, Gln262, Pro263, Tyr267, Phe434 and ... >> More
To provide insight into the catalytic mechanism for the final deprotonation reaction of squalene-hopene cyclase (SHC) from Alicyclobacillus acidocaldarius, mutagenesis experiments were conducted for the following ten residues: Thr41, Glu45, Glu93, Arg127, Trp133, Gln262, Pro263, Tyr267, Phe434 and Phe437. An X-ray analysis of SHC has revealed that two types of water molecules ("front water" and "back waters") were involved around the deprotonation site. The results of these mutagenesis experiments allow us to propose the functions of these residues. The two residues of Gln262 and Pro263 probably work to keep away the isopropyl group of the hopanyl cation intermediate from the "front water molecule," that is, to place the "front water" in a favorable position, leading to the minimal production of by-products, i.e., hopanol and hop-21(22)-ene. The five residues of Thr41, Glu45, Glu93, Arg127 and Trp133, by which the hydrogen-bonded network incorporating the "back waters" is constructed, increase the polarization of the "front water" to facilitate proton elimination from the isopropyl moiety of the hopanyl cation, leading to the normal product, hop-22(29)-ene. The three aromatic residues of Tyr267, Phe434 and Phe437 are likely to play an important role in guiding squalene from the enzyme surface to the reaction cavity (substrate channeling) by the strong affinity of their aromatic residues to the squalene substrate. << Less
Biosci Biotechnol Biochem 68:728-738(2004) [PubMed] [EuropePMC]