Enzymes
UniProtKB help_outline | 39,705 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,280 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline D-glutamate Identifier CHEBI:29986 (Beilstein: 8319427) help_outline Charge -1 Formula C5H8NO4 InChIKeyhelp_outline WHUUTDBJXJRKMK-GSVOUGTGSA-M SMILEShelp_outline [NH3+][C@H](CCC([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 13 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP-N-acetyl-α-D-muramoyl-L-alanine Identifier CHEBI:83898 Charge -3 Formula C23H33N4O20P2 InChIKeyhelp_outline NTMMCWJNQNKACG-KBKUWGQMSA-K SMILEShelp_outline C[C@H](NC(=O)[C@@H](C)O[C@H]1[C@H](O)[C@@H](CO)O[C@H](OP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2ccc(=O)[nH]c2=O)[C@@H]1NC(C)=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ADP Identifier CHEBI:456216 (Beilstein: 3783669) help_outline Charge -3 Formula C10H12N5O10P2 InChIKeyhelp_outline XTWYTFMLZFPYCI-KQYNXXCUSA-K SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 841 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 992 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP-N-acetyl-α-D-muramoyl-L-alanyl-D-glutamate Identifier CHEBI:83900 Charge -4 Formula C28H39N5O23P2 InChIKeyhelp_outline OJZCATPXPWFLHF-HPUCEMLMSA-J SMILEShelp_outline C[C@H](NC(=O)[C@@H](C)O[C@H]1[C@H](O)[C@@H](CO)O[C@H](OP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2ccc(=O)[nH]c2=O)[C@@H]1NC(C)=O)C(=O)N[C@H](CCC([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:16429 | RHEA:16430 | RHEA:16431 | RHEA:16432 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
Recent advances in the formation of the bacterial peptidoglycan monomer unit.
van Heijenoort J.
Nat Prod Rep 18:503-519(2001) [PubMed] [EuropePMC]
This publication is cited by 11 other entries.
-
Study of the reaction mechanism of the D-glutamic acid-adding enzyme from Escherichia coli.
Vaganay S., Tanner M.E., van Heijenoort J., Blanot D.
The D-glutamic acid-adding enzyme of Escherichia coli, or MurD, was purified from an overproducing strain and a few aspects of its reaction mechanism were studied. The existence of a reactive cysteinyl residue was shown by the following experiments: (1) two thiol-modifying reagents, (5,5'-dithiobi ... >> More
The D-glutamic acid-adding enzyme of Escherichia coli, or MurD, was purified from an overproducing strain and a few aspects of its reaction mechanism were studied. The existence of a reactive cysteinyl residue was shown by the following experiments: (1) two thiol-modifying reagents, (5,5'-dithiobis)2-nitrobenzoic acid and 2-nitro-5-thiocyanobenzoic acid, inactivated the enzyme; (2) incubation with tetranitromethane led to inactivation and to the appearance of cysteic acid (not to 3-nitrotyrosine); (3) in each case, ATP or UDP-MurNAc-L-Ala (but not D-glutamic acid) protected the enzyme from inactivation. The existence of a reactive lysyl residue was shown by the action of 2,4,6-trinitrobenzenesulfonic acid, a reagent specific for lysyl residues present in phosphate-binding sites. The formation of an acyl phosphate intermediate was consistent with three types of results: (1) the molecular isotope exchange reaction, which took place only in the presence of phosphate, but which was not strictly dependent on the presence of ADP; (2) a release of phosphate, measured by the molybdate assay, observed when the enzyme was incubated with ATP and UDP-MurNAc-L-Ala (without D-glutamic acid); (3) the appearance of a new radioactive compound (besides ATP and Pi) after incubation for a few minutes with UDP-MurNAc-L-Ala and [gamma-32P]ATP. Finally, the fact that phosphinate 1 was a good inhibitor of the enzyme (IC50 = 0.7 microM) strongly suggested that a tetrahedral transition state follows the acyl phosphate in the reaction pathway. << Less
-
MurD ligase from E. coli: Tetrahedral intermediate formation study by hybrid quantum mechanical/molecular mechanical replica path method.
Perdih A., Hodoscek M., Solmajer T.
MurD (UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase), a three-domain bacterial protein, catalyses a highly specific incorporation of D-glutamate to the cytoplasmic intermediate UDP-N-acetyl-muramoyl-L-alanine (UMA) utilizing ATP hydrolysis to ADP and P(i). This reaction is part of a biosynthet ... >> More
MurD (UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase), a three-domain bacterial protein, catalyses a highly specific incorporation of D-glutamate to the cytoplasmic intermediate UDP-N-acetyl-muramoyl-L-alanine (UMA) utilizing ATP hydrolysis to ADP and P(i). This reaction is part of a biosynthetic path yielding bacterial peptidoglycan. On the basis of structural studies of MurD complexes, a stepwise catalytic mechanism was proposed that commences with a formation of the acyl-phosphate intermediate, followed by a nucleophilic attack of D-glutamate that, through the formation of a tetrahedral reaction intermediate and subsequent phosphate dissociation, affords the final product, UDP-N-acetyl-muramoyl-L-alanine-D-glutamate (UMAG). A hybrid quantum mechanical/molecular mechanical (QM/MM) molecular modeling approach was utilized, combining the B3LYP QM level of theory with empirical force field simulations to evaluate three possible reaction pathways leading to tetrahedral intermediate formation. Geometries of the starting structures based on crystallographic experimental data and tetrahedral intermediates were carefully examined together with a role of crucial amino acids and water molecules. The replica path method was used to generate the reaction pathways between the starting structures and the corresponding tetrahedral reaction intermediates, offering direct comparisons with a sequential kinetic mechanism and the available structural data for this enzyme. The acquired knowledge represents new and valuable information to assist in the ongoing efforts leading toward novel inhibitors of MurD as potential antibacterial drugs. << Less
-
Cloning and expression of Staphylococcus aureus and Streptococcus pyogenes murD genes encoding uridine diphosphate N-acetylmuramoyl-L-alanine:D-glutamate ligases.
El-Sherbeini M., Geissler W.M., Pittman J., Yuan X., Wong K.K., Pompliano D.L.
Bacterial UDP-N-acetylmuramyl-L-alanine:D-glutamate ligase (MurD), a cytoplasmic peptidoglycan biosynthetic enzyme, catalyzes the ATP-dependent addition of D-glutamate to an alanyl residue of the UDP-N-acetylmuramyl-L-alanine precursor, generating the dipeptide. The murD gene was cloned from both ... >> More
Bacterial UDP-N-acetylmuramyl-L-alanine:D-glutamate ligase (MurD), a cytoplasmic peptidoglycan biosynthetic enzyme, catalyzes the ATP-dependent addition of D-glutamate to an alanyl residue of the UDP-N-acetylmuramyl-L-alanine precursor, generating the dipeptide. The murD gene was cloned from both Staphylococcus aureus and Streptococcus pyogenes. Sequence analysis of the S. aureus murD gene revealed an open reading frame of 449 amino acids. The deduced aa sequence of S. aureus MurD is highly homologous to MurD from Escherichia coli, Haemophilus influenzae, Bacillus subtilis and St. pyogenes. Recombinant MurD protein from both S. aureus and St. pyogenes was separately overproduced in E. coli and purified as His-tagged fusion. Both recombinant enzymes catalyzed the ATP-dependent addition of D-glutamate to the precursor sugar peptide. << Less