Reaction participants Show >> << Hide
- Name help_outline formaldehyde Identifier CHEBI:16842 (Beilstein: 1209228; CAS: 50-00-0) help_outline Charge 0 Formula CH2O InChIKeyhelp_outline WSFSSNUMVMOOMR-UHFFFAOYSA-N SMILEShelp_outline [H]C([H])=O 2D coordinates Mol file for the small molecule Search links Involved in 141 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,186 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline formate Identifier CHEBI:15740 (Beilstein: 1901205; CAS: 71-47-6) help_outline Charge -1 Formula CHO2 InChIKeyhelp_outline BDAGIHXWWSANSR-UHFFFAOYSA-M SMILEShelp_outline [H]C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 97 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,116 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:16425 | RHEA:16426 | RHEA:16427 | RHEA:16428 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Human aldehyde dehydrogenase. Activity with aldehyde metabolites of monoamines, diamines, and polyamines.
Ambroziak W., Pietruszko R.
Two isozymes (E1 and E2) of human aldehyde dehydrogenase (EC 1.2.1.3) were purified to homogeneity 13 years ago and a third isozyme (E3) with a low Km for gamma-aminobutyraldehyde only recently. Comparison with a variety of substrates demonstrates that substrate specificity of all three isozymes i ... >> More
Two isozymes (E1 and E2) of human aldehyde dehydrogenase (EC 1.2.1.3) were purified to homogeneity 13 years ago and a third isozyme (E3) with a low Km for gamma-aminobutyraldehyde only recently. Comparison with a variety of substrates demonstrates that substrate specificity of all three isozymes is broad and similar. With straight chain aliphatic aldehydes (C1-C6) the Km values of the E3 isozyme are identical with those of the E1 isozyme. All isozymes dehydrogenate naturally occurring aldehydes, 5-imidazoleacetaldehyde (histamine metabolite) and acrolein (product of beta-elimination of oxidized polyamines) with similar catalytic efficiency. Differences between the isozymes are in the Km values for aminoaldehydes. Although all isozymes can dehydrogenate gamma-aminobutyraldehyde, the Km value of the E3 isozyme is much lower: the same appears to apply to aldehyde metabolites of cadaverine, agmatine, spermidine, and spermine for which Km values range between 2-18 microM and kcat values between 0.8-1.9 mumol/min/mg. Thus, the E3 isozyme has properties which make it suitable for the metabolism of aminoaldehydes. The physiological role of E1 and E2 isozymes could be in dehydrogenation of aldehyde metabolites of monoamines such as 3,4-dihydroxyphenylacetaldehyde or 5-hydroxyindoleacetaldehyde; the catalytic efficiency with these substrates is better with E1 and E2 isozymes than with E3 isozyme. Isoelectric focusing of liver homogenates followed by development with various physiological substrates together with substrate specificity data suggest that aldehyde dehydrogenase (EC 1.2.1.3) is the only enzyme in the human liver capable of catalyzing dehydrogenation of aldehydes arising via monoamine, diamine, and plasma amine oxidases. Although the enzyme is generally considered to function in detoxication, our data suggest an additional function in metabolism of biogenic amines. << Less
J. Biol. Chem. 266:13011-13018(1991) [PubMed] [EuropePMC]
This publication is cited by 19 other entries.
-
Enzymological aspects of caffeine demethylation and formaldehyde oxidation by Pseudomonas putida C1.
Hohnloser W., Osswald B., Lingens F.
1) The enzymatic demethylation of caffeine (1,3,7-trimethylxanthine) by Pseudomonas putida C1 was investigated; an inducible enzyme system has been observed. This enzyme shows an optimum pH of about 6.0, and the optimum temperature is in the range of 22-24 degrees C. The enzyme is absolutely depen ... >> More
1) The enzymatic demethylation of caffeine (1,3,7-trimethylxanthine) by Pseudomonas putida C1 was investigated; an inducible enzyme system has been observed. This enzyme shows an optimum pH of about 6.0, and the optimum temperature is in the range of 22-24 degrees C. The enzyme is absolutely dependent on NADH or NADPH as a cosubstrate and is activated by CO2+. 2) The formaldehyde generated by the demethylation of caffeine is oxidized by an NAD-dependent formaldehyde dehydrogenase, which is independent of Mg2+ and glutathione. The enzyme was purified from cell-free extracts of Pseudomonas putida C1 by DEAE-cellulose, Sephadex G-150 and Sephadex A-50 chromatography. The purified enzyme was homogeneous as judged by polyacrylamide gel electrophoresis and was most active at a pH between 8.5 and 9.0. The molecular weight was estimated to be about 250,000 by the gel filtration method. Kinetic analysis gave KM values of about 0.2 mM for formaldehyde and 0.5 mM for NAD+. << Less
Hoppe Seylers Z Physiol Chem 361:1763-1766(1980) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
P. putida formaldehyde dehydrogenase. An alcohol dehydrogenase masquerading as an aldehyde dehydrogenase.
Oppenheimer N.J., Henehan G.T., Huete-Perez J.A., Ito K.
Adv. Exp. Med. Biol. 414:417-423(1997) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Formaldehyde dehydrogenase from Pseudomonas putida: a zinc metalloenzyme.
Ogushi S., Ando M., Tsuru D.
The NAD+-dependent formaldehyde dehydrogenase from Pseudomonas putida C-83 was found to contain 4 gram atoms of zinc per mol, corresponding to 2 gram atoms of zinc per subunit monomer. Treatment of the enzyme with o-phenanthroline resulted in removal of 1 gram atom of zinc per subunit and caused a ... >> More
The NAD+-dependent formaldehyde dehydrogenase from Pseudomonas putida C-83 was found to contain 4 gram atoms of zinc per mol, corresponding to 2 gram atoms of zinc per subunit monomer. Treatment of the enzyme with o-phenanthroline resulted in removal of 1 gram atom of zinc per subunit and caused a complete inactivation of the enzyme. The activity lost was restored by the addition of zinc ions, by which the zinc content was also reversed to almost the same level as that of the native enzyme. Another zinc atom that was resistant to metal chelator-treatment was liberated from the enzyme only after the irreversible denaturation of the enzyme. These results indicate that the formaldehyde dehydrogenase of P. putida is a zinc metalloenzyme and one of two zinc atoms per subunit participates in the catalytic activity of the enzyme, another zinc being presumably involved in maintaining the native conformation of the enzyme. Treatment of the enzyme with bipyridine also caused a reversible inactivation of the enzyme, but the zinc content remained unchanged. The spectrophotometric analysis indicated that the formation of a enzyme-Zn-bipyridine complex took place. Incubation of the enzyme with p-chloromercuribenzoate also resulted in a complete loss of the activity. These results suggest that an intrinsic zinc and sulfhydryl group together with NAD+ participate in the dehydrogenation reaction of substrate by the enzyme. << Less
J. Biochem. 96:1587-1591(1984) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.