Enzymes
UniProtKB help_outline | 6 proteins |
Reaction participants Show >> << Hide
- Name help_outline taurochenodeoxycholate Identifier CHEBI:9407 (Beilstein: 3919127) help_outline Charge -1 Formula C26H44NO6S InChIKeyhelp_outline BHTRKEVKTKCXOH-BJLOMENOSA-M SMILEShelp_outline [H][C@@]12C[C@H](O)CC[C@]1(C)[C@@]1([H])CC[C@]3(C)[C@]([H])(CC[C@@]3([H])[C@]1([H])[C@H](O)C2)[C@H](C)CCC(=O)NCCS([O-])(=O)=O 2D coordinates Mol file for the small molecule Search links Involved in 10 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline chenodeoxycholate Identifier CHEBI:36234 (Beilstein: 3703074) help_outline Charge -1 Formula C24H39O4 InChIKeyhelp_outline RUDATBOHQWOJDD-BSWAIDMHSA-M SMILEShelp_outline [H][C@@]12C[C@H](O)CC[C@]1(C)[C@@]1([H])CC[C@]3(C)[C@]([H])(CC[C@@]3([H])[C@]1([H])[C@H](O)C2)[C@H](C)CCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 18 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline taurine Identifier CHEBI:507393 Charge 0 Formula C2H7NO3S InChIKeyhelp_outline XOAAWQZATWQOTB-UHFFFAOYSA-N SMILEShelp_outline [NH3+]CCS([O-])(=O)=O 2D coordinates Mol file for the small molecule Search links Involved in 43 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:16309 | RHEA:16310 | RHEA:16311 | RHEA:16312 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Bile salt hydrolase of Bifidobacterium longum-biochemical and genetic characterization.
Tanaka H., Hashiba H., Kok J., Mierau I.
A bile salt hydrolase (BSH) was isolated from Bifidobacterium longum SBT2928, purified, and characterized. Furthermore, we describe for the first time cloning and analysis of the gene encoding BSH (bsh) in a member of the genus Bifidobacterium. The enzyme has a native molecular weight of 125,000 t ... >> More
A bile salt hydrolase (BSH) was isolated from Bifidobacterium longum SBT2928, purified, and characterized. Furthermore, we describe for the first time cloning and analysis of the gene encoding BSH (bsh) in a member of the genus Bifidobacterium. The enzyme has a native molecular weight of 125,000 to 130,000 and a subunit molecular weight of 35,024, as determined from the deduced amino acid sequence, indicating that the enzyme is a tetramer. The pH optimum of B. longum BSH is between 5 and 7, and the temperature optimum is 40 degrees C. The enzyme is strongly inhibited by thiol enzyme inhibitors, indicating that a Cys residue is likely to be involved in the catalytic reaction. The BSH of B. longum can hydrolyze all six major human bile salts and at least two animal bile salts. A slight preference for glycine-conjugated bile acids was detected based on both the specificity and the K(m) values. The nucleotide sequence of bsh was determined and used for homology studies, transcript analysis, and construction and analysis of various mutants. The levels of homology with BSH of other bacteria and with penicillin V acylase (PVA) of Bacillus sphaericus were high. On the basis of the similarity of BSH and PVA, whose crystal structure has been elucidated, BSH can be classified as an N-terminal nucleophile hydrolase with Cys as the N-terminal amino acid. This classification was confirmed by the fact that a Cys1Ala exchange by site-directed mutagenesis resulted in an inactive protein. Reverse transcription-PCR experiments revealed that bsh is part of an operon containing at least two genes, bsh and glnE (GlnE is glutamine synthetase adenylyltransferase). Two UV-induced BSH-negative mutants and one spontaneous BSH-negative mutant were isolated from B. longum SBT2928 cultures and characterized. These mutants had point mutations that inactivated bsh by premature termination, frameshift, or amino acid exchange. << Less
Appl. Environ. Microbiol. 66:2502-2512(2000) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.
-
The human bile acid-CoA:amino acid N-acyltransferase functions in the conjugation of fatty acids to glycine.
O'Byrne J., Hunt M.C., Rai D.K., Saeki M., Alexson S.E.
Bile acid-CoA:amino acid N-acyltransferase (BACAT) catalyzes the conjugation of bile acids to glycine and taurine for excretion into bile. By use of site-directed mutagenesis and sequence comparisons, we have identified Cys-235, Asp-328, and His-362 as constituting a catalytic triad in human BACAT ... >> More
Bile acid-CoA:amino acid N-acyltransferase (BACAT) catalyzes the conjugation of bile acids to glycine and taurine for excretion into bile. By use of site-directed mutagenesis and sequence comparisons, we have identified Cys-235, Asp-328, and His-362 as constituting a catalytic triad in human BACAT (hBACAT) and identifying BACAT as a member of the type I acyl-CoA thioesterase gene family. We therefore hypothesized that hBACAT may also hydrolyze fatty acyl-CoAs and/or conjugate fatty acids to glycine. We show here that recombinant hBACAT also can hydrolyze long- and very long-chain saturated acyl-CoAs (mainly C16:0-C26:0) and by mass spectrometry verified that hBACAT also conjugates fatty acids to glycine. Tissue expression studies showed strong expression of BACAT in liver, gallbladder, and the proximal and distal intestine. However, BACAT is also expressed in a variety of tissues unrelated to bile acid formation and transport, suggesting important functions also in the regulation of intracellular levels of very long-chain fatty acids. Green fluorescent protein localization experiments in human skin fibroblasts showed that the hBACAT enzyme is mainly cytosolic. Therefore, the cytosolic BACAT enzyme may play important roles in protection against toxicity by accumulation of unconjugated bile acids and non-esterified very long-chain fatty acids. << Less
J. Biol. Chem. 278:34237-34244(2003) [PubMed] [EuropePMC]
This publication is cited by 17 other entries.