Reaction participants Show >> << Hide
-
Namehelp_outline
3-O-(β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-seryl-[protein]
Identifier
RHEA-COMP:12573
Reactive part
help_outline
- Name help_outline 3-O-(β-D-glucuronosyl-(1→3)-β-D-galactosyl-(1→3)-β-D-galactosyl-(1→4)-β-D-xylosyl)-L-serine residue Identifier CHEBI:132093 Charge -1 Formula C26H40NO22 SMILEShelp_outline O([C@H]1[C@@H]([C@H]([C@@H](CO1)O[C@H]2[C@@H]([C@H]([C@H]([C@H](O2)CO)O)O[C@H]3[C@@H]([C@H]([C@H]([C@H](O3)CO)O)O[C@H]4[C@@H]([C@H]([C@@H]([C@H](O4)C(=O)[O-])O)O)O)O)O)O)O)C[C@@H](C(*)=O)N* 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP-N-acetyl-α-D-glucosamine Identifier CHEBI:57705 (Beilstein: 4286654) help_outline Charge -2 Formula C17H25N3O17P2 InChIKeyhelp_outline LFTYTUAZOPRMMI-CFRASDGPSA-L SMILEShelp_outline CC(=O)N[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1ccc(=O)[nH]c1=O 2D coordinates Mol file for the small molecule Search links Involved in 88 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
3-O-(α-D-GlcNAc-(1→4)-β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-seryl-[protein]
Identifier
RHEA-COMP:12574
Reactive part
help_outline
- Name help_outline 3-O-(N-acetyl-α-D-glucosaminyl-(1→4)-β-D-glucuronosyl-(1→3)-β-D-galactosyl-(1→3)-β-D-galactosyl-(1→4)-β-D-xylosyl)-L-serine residue Identifier CHEBI:132104 Charge -1 Formula C34H53N2O27 SMILEShelp_outline O([C@H]1[C@@H]([C@H]([C@@H](CO1)O[C@H]2[C@@H]([C@H]([C@H]([C@H](O2)CO)O)O[C@H]3[C@@H]([C@H]([C@H]([C@H](O3)CO)O)O[C@H]4[C@@H]([C@H]([C@@H]([C@H](O4)C(=O)[O-])O[C@@H]5[C@@H]([C@H]([C@@H]([C@H](O5)CO)O)O)NC(C)=O)O)O)O)O)O)O)C[C@@H](C(*)=O)N* 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP Identifier CHEBI:58223 Charge -3 Formula C9H11N2O12P2 InChIKeyhelp_outline XCCTYIAWTASOJW-XVFCMESISA-K SMILEShelp_outline O[C@@H]1[C@@H](COP([O-])(=O)OP([O-])([O-])=O)O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1=O 2D coordinates Mol file for the small molecule Search links Involved in 577 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:16221 | RHEA:16222 | RHEA:16223 | RHEA:16224 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
rib-2, a Caenorhabditis elegans homolog of the human tumor suppressor EXT genes encodes a novel alpha1,4-N-acetylglucosaminyltransferase involved in the biosynthetic initiation and elongation of heparan sulfate.
Kitagawa H., Egusa N., Tamura J., Kusche-Gullberg M., Lindahl U., Sugahara K.
The proteins encoded by the EXT1, EXT2, and EXTL2 genes, members of the hereditary multiple exostoses gene family of tumor suppressors, are glycosyltransferases required for the heparan sulfate biosynthesis. Only two homologous genes, rib-1 and rib-2, of the mammalian EXT genes were identified in ... >> More
The proteins encoded by the EXT1, EXT2, and EXTL2 genes, members of the hereditary multiple exostoses gene family of tumor suppressors, are glycosyltransferases required for the heparan sulfate biosynthesis. Only two homologous genes, rib-1 and rib-2, of the mammalian EXT genes were identified in the Caenorhabditis elegans genome. Although heparan sulfate is found in C. elegans, the involvement of the rib-1 and rib-2 proteins in heparan sulfate biosynthesis remains unclear. In the present study, the substrate specificity of a soluble recombinant form of the rib-2 protein was determined and compared with those of the recombinant forms of the mammalian EXT1, EXT2, and EXTL2 proteins. The present findings revealed that the rib-2 protein was a unique alpha1,4-N-acetylglucosaminyltransferase involved in the biosynthetic initiation and elongation of heparan sulfate. In contrast, the findings confirmed the previous observations that both the EXT1 and EXT2 proteins were heparan sulfate copolymerases with both alpha1,4-N-acetylglucosaminyltransferase and beta1,4-glucuronyltransferase activities, which are involved only in the elongation step of the heparan sulfate chain, and that the EXTL2 protein was an alpha1,4-N-acetylglucosaminyltransferase involved only in the initiation of heparan sulfate synthesis. These findings suggest that the biosynthetic mechanism of heparan sulfate in C. elegans is distinct from that reported for the mammalian system. << Less
J. Biol. Chem. 276:4834-4838(2001) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Crystal structure of an alpha 1,4-N-acetylhexosaminyltransferase (EXTL2), a member of the exostosin gene family involved in heparan sulfate biosynthesis.
Pedersen L.C., Dong J., Taniguchi F., Kitagawa H., Krahn J.M., Pedersen L.G., Sugahara K., Negishi M.
EXTL2, an alpha1,4-N-acetylhexosaminyltransferase, catalyzes the transfer reaction of N-acetylglucosamine and N-acetylgalactosamine from the respective UDP-sugars to the non-reducing end of [glucuronic acid]beta1-3[galactose]beta1-O-naphthalenemethanol, an acceptor substrate analog of the natural ... >> More
EXTL2, an alpha1,4-N-acetylhexosaminyltransferase, catalyzes the transfer reaction of N-acetylglucosamine and N-acetylgalactosamine from the respective UDP-sugars to the non-reducing end of [glucuronic acid]beta1-3[galactose]beta1-O-naphthalenemethanol, an acceptor substrate analog of the natural common linker of various glycosylaminoglycans. We have solved the x-ray crystal structure of the catalytic domain of mouse EXTL2 in the apo-form and with donor substrates UDP-N-acetylglucosamine and UDP-N-acetylgalactosamine. In addition, a structure of the ternary complex with UDP and the acceptor substrate analog [glucuronic acid]beta1-3[galactose]beta1-O-naphthalenemethanol has been determined. These structures reveal three highly conserved residues, Asn-243, Asp-246, and Arg-293, located at the active site. Mutation of these residues greatly decreases the activity. In the ternary complex, an interaction exists between the beta-phosphate of the UDP leaving group and the acceptor hydroxyl of the substrate that may play a functional role in catalysis. These structures represent the first structures from the exostosin gene family and provide important insight into the mechanisms of alpha1,4-N-acetylhexosaminyl transfer in heparan biosynthesis. << Less
-
The tumor suppressor EXT-like gene EXTL2 encodes an alpha1, 4-N-acetylhexosaminyltransferase that transfers N-acetylgalactosamine and N-acetylglucosamine to the common glycosaminoglycan-protein linkage region. The key enzyme for the chain initiation of heparan sulfate.
Kitagawa H., Shimakawa H., Sugahara K.
We previously demonstrated a unique alpha-N-acetylgalactosaminyltransferase that transferred N-acetylgalactosamine (GalNAc) to the tetrasaccharide-serine, GlcAbeta1-3Galbeta1-3Galbeta1-4Xylbeta1-O-Ser (GlcA represents glucuronic acid), derived from the common glycosaminoglycan-protein linkage regi ... >> More
We previously demonstrated a unique alpha-N-acetylgalactosaminyltransferase that transferred N-acetylgalactosamine (GalNAc) to the tetrasaccharide-serine, GlcAbeta1-3Galbeta1-3Galbeta1-4Xylbeta1-O-Ser (GlcA represents glucuronic acid), derived from the common glycosaminoglycan-protein linkage region, through an alpha1,4-linkage. In this study, we purified the enzyme from the serum-free culture medium of a human sarcoma cell line. Peptide sequence analysis of the purified enzyme revealed 100% identity to the multiple exostoses-like gene EXTL2/EXTR2, a member of the hereditary multiple exostoses (EXT) gene family of tumor suppressors. The expression of a soluble recombinant form of the protein produced an active enzyme, which transferred alpha-GalNAc from UDP-[3H]GalNAc to various acceptor substrates including GlcAbeta1-3Galbeta1-3Galbeta1-4Xylbeta1-O-Ser. Interestingly, the enzyme also catalyzed the transfer of N-acetylglucosamine (GlcNAc) from UDP-[3H]GlcNAc to GlcAbeta1-3Galbeta1-O-naphthalenemethanol, which was the acceptor substrate for the previously described GlcNAc transferase I involved in the biosynthetic initiation of heparan sulfate. The GlcNAc transferase reaction product was sensitive to the action of heparitinase I, establishing the identity of the enzyme to be alpha1, 4-GlcNAc transferase. These results altogether indicate that EXTL2/EXTR2 encodes the alpha1,4-N-acetylhexosaminyltransferase that transfers GalNAc/GlcNAc to the tetrasaccharide representing the common glycosaminoglycan-protein linkage region and that is most likely the critical enzyme that determines and initiates the heparin/heparan sulfate synthesis, separating it from the chondroitin sulfate/dermatan sulfate synthesis. << Less
-
Demonstration of a novel gene DEXT3 of Drosophila melanogaster as the essential N-acetylglucosamine transferase in the heparan sulfate biosynthesis: chain initiation and elongation.
Kim B.-T., Kitagawa H., Tamura J., Kusche-Gullberg M., Lindahl U., Sugahara K.
Hereditary multiple exostoses gene (EXT) family members encode glycosyltransferases required for heparan sulfate (HS) biosynthesis in humans as well as in Drosophila. In the present study, we identified a novel Drosophila EXT protein with a type II transmembrane topology and demonstrated its glyco ... >> More
Hereditary multiple exostoses gene (EXT) family members encode glycosyltransferases required for heparan sulfate (HS) biosynthesis in humans as well as in Drosophila. In the present study, we identified a novel Drosophila EXT protein with a type II transmembrane topology and demonstrated its glycosyltransferase activities. The truncated soluble form of this new homolog designated DEXT3 transferred N-acetylglucosamine (GlcNAc) through an alpha1,4-linkage not only to N-acetylheparosan oligosaccharides that represent growing HS chains (alpha-GlcNAc transferase II activity) but also to GlcUAbeta1-3Galbeta1-O-C(2)H(4)NHCbz, a synthetic substrate for alpha-GlcNAc transferase I that determines and initiates HS biosynthesis. The results suggest that DEXT3 is the ortholog of human EXTL3 and Caenorhabditis elegans rib-2. Semiquantitative reverse transcriptase-PCR analysis revealed ubiquitous expression of the DEXT3 mRNA. Based on the findings of the present study and those of a recent study where a fly mutant, deficient in the botv gene identical to DEXT3, affected HS proteoglycan-mediated developmental signalings, it is suggested that DEXT3 with the revealed glycosyltransferase activities is critically involved in HS formation in Drosophila. These results suggest the essential roles of DEXT3, its human ortholog EXTL3, and the C. elegans ortholog rib-2 in the biosynthesis of heparan sulfate and heparin, if present, in the respective organisms. << Less