Reaction participants Show >> << Hide
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-arabinono-1,4-lactone Identifier CHEBI:17100 (Beilstein: 82060; CAS: 51532-86-6) help_outline Charge 0 Formula C5H8O5 InChIKeyhelp_outline CUOKHACJLGPRHD-YVZJFKFKSA-N SMILEShelp_outline OC[C@@H]1OC(=O)[C@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-arabinonate Identifier CHEBI:16501 (Beilstein: 5512976; CAS: 608-53-7) help_outline Charge -1 Formula C5H9O6 InChIKeyhelp_outline QXKAIJAYHKCRRA-YVZJFKFKSA-M SMILEShelp_outline OC[C@H](O)[C@H](O)[C@@H](O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:16217 | RHEA:16218 | RHEA:16219 | RHEA:16220 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Identification and characterization of L-arabonate dehydratase, L-2-keto-3-deoxyarabonate dehydratase and L-arabinolactonase involved in an alternative pathway of L-arabinose metabolism: novel evolutionary insight into sugar metabolism.
Watanabe S., Shimada N., Tajima K., Kodaki T., Makino K.
Azospirillum brasiliense possesses an alternative pathway of L-arabinose metabolism, different from the known bacterial and fungal pathways. In the preceding articles, we identified and characterized L-arabinose-1-dehydrogenase and alpha-ketoglutaric semialdehyde dehydrogenase, which catalyzes the ... >> More
Azospirillum brasiliense possesses an alternative pathway of L-arabinose metabolism, different from the known bacterial and fungal pathways. In the preceding articles, we identified and characterized L-arabinose-1-dehydrogenase and alpha-ketoglutaric semialdehyde dehydrogenase, which catalyzes the first and final reaction steps in this pathway, respectively (Watanabe, S., Kodaki, T., and Makino, K. (2006) J. Biol. Chem. 281, 2612-2623 and Watanabe, S., Kodaki, T., and Makino, K. (2006) J. Biol. Chem. 281, 28876-28888). We here report the remaining three enzymes, L-arabonate dehydratase, L-2-keto-3-deoxyarabonate (L-KDA) dehydratase, and L-arabinolactonase. N-terminal amino acid sequences of L-arabonate dehydratase and L-KDA dehydratase purified from A. brasiliense cells corresponded to those of AraC and AraD genes, which form a single transcriptional unit together with the L-arabinose-1-dehydrogenase gene. Furthermore, the L-arabinolactonase gene (AraB) was also identified as a component of the gene cluster. Genetic characterization of the alternative L-arabinose pathway suggested a significant evolutional relationship with the known sugar metabolic pathways, including the Entner-Doudoroff (ED) pathway and the several modified versions. L-arabonate dehydratase belongs to the ILVD/EDD family and spectrophotometric and electron paramagnetic resonance analysis revealed it to contain a [4Fe-4S](2+) cluster. Site-directed mutagenesis identified three cysteine ligands essential for cluster coordination. L-KDA dehydratase was sequentially similar to DHDPS/NAL family proteins. D-2-Keto-3-deoxygluconate aldolase, a member of the DHDPS/NAL family, catalyzes the equivalent reaction to L-KDA aldolase involved in another alternative L-arabinose pathway, probably associating a unique evolutional event between the two alternative L-arabinose pathways by mutation(s) of a common ancestral enzyme. Site-directed mutagenesis revealed a unique catalytic amino acid residue in L-KDA dehydratase, which may be a candidate for such a natural mutation. << Less
J. Biol. Chem. 281:33521-33536(2006) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
The oxidation of L-arabinose by Pseudomonas saccharophila.
WEIMBERG R., DOUDOROFF M.
J Biol Chem 217:607-624(1955) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.