Reaction participants Show >> << Hide
- Name help_outline 2,2-dialkylglycine Identifier CHEBI:57689 Charge 0 Formula C2H3NO2R2 SMILEShelp_outline [NH3+]C([*])([*])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline pyruvate Identifier CHEBI:15361 (Beilstein: 3587721; CAS: 57-60-3) help_outline Charge -1 Formula C3H3O3 InChIKeyhelp_outline LCTONWCANYUPML-UHFFFAOYSA-M SMILEShelp_outline CC(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 215 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CO2 Identifier CHEBI:16526 (Beilstein: 1900390; CAS: 124-38-9) help_outline Charge 0 Formula CO2 InChIKeyhelp_outline CURLTUGMZLYLDI-UHFFFAOYSA-N SMILEShelp_outline O=C=O 2D coordinates Mol file for the small molecule Search links Involved in 997 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline dialkyl ketone Identifier CHEBI:18044 Charge 0 Formula COR2 SMILEShelp_outline [*]C([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 23 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-alanine Identifier CHEBI:57972 Charge 0 Formula C3H7NO2 InChIKeyhelp_outline QNAYBMKLOCPYGJ-REOHCLBHSA-N SMILEShelp_outline C[C@H]([NH3+])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 112 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:16073 | RHEA:16074 | RHEA:16075 | RHEA:16076 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Structural and mechanistic analysis of two refined crystal structures of the pyridoxal phosphate-dependent enzyme dialkylglycine decarboxylase.
Toney M.D., Hohenester E., Keller J.W., Jansonius J.N.
Two refined structures, differing in alkali metal ion content, of the bifunctional, pyridoxal phosphate-dependent enzyme dialkylglycine decarboxylase (DGD) are presented in detail. The enzyme is an alpha 4 tetramer, built up as a dimer of dimers, with a subunit molecular mass of 46.5 kDa. The fold ... >> More
Two refined structures, differing in alkali metal ion content, of the bifunctional, pyridoxal phosphate-dependent enzyme dialkylglycine decarboxylase (DGD) are presented in detail. The enzyme is an alpha 4 tetramer, built up as a dimer of dimers, with a subunit molecular mass of 46.5 kDa. The fold of DGD is similar to those of aspartate aminotransferase, omega-amino acid aminotransferase and tyrosine phenol-lyase. The structure has two binding sites for alkali metal ions. DGD with potassium in site 1 (near the active site) and sodium in site 2 (at the surface of the molecule) has been refined against 2.6A resolution data (R-factor = 17.6%), and DGD with sodium at both sites has been refined against 2.1 A resolution data (R-factor = 17.8%). The proximity of site 1 to the active site accounts for the dependence of enzyme activity on potassium ions, and the observed active site structural changes caused by ion exchange at this site explain the inhibition of activity by sodium. DGD catalyzes both the decarboxylation of dialkylglycine species and the transamination of L-amino acids in its normal catalytic cycle. The active site structure of DGD is moderately homologous to that of aspartate aminotransferase, which catalyzes only transamination; both the differences and similarities provide mechanistic guidelines for the DGD-catalyzed reactions. Models of the L-isovaline and L-alanine external aldimine intermediates suggest mechanisms by which the decarboxylation and transamination reactions could be accomplished within the single active site. Decarboxylation is proposed to be at least partially catalyzed by stereoelectronic activation of the C alpha-carboxylate bond achieved by orienting this bond perpendicular to the plane of the pyridinium ring in the dialkylglycine external aldimine intermediate. Transamination is proposed to be catalyzed by a similar effect on the C alpha-H bond of the L-amino acid external aldimine intermediate, combined with general base catalysis provided by Lys272, in analogy to the mechanism of aspartate aminotransferase. << Less
-
Directed evolution of the substrate specificity of dialkylglycine decarboxylase.
Taylor J.L., Price J.E., Toney M.D.
Dialkylglycine decarboxylase (DGD) is an unusual pyridoxal phosphate dependent enzyme that catalyzes decarboxylation in the first and transamination in the second half-reaction of its ping-pong catalytic cycle. Directed evolution was employed to alter the substrate specificity of DGD from 2-aminoi ... >> More
Dialkylglycine decarboxylase (DGD) is an unusual pyridoxal phosphate dependent enzyme that catalyzes decarboxylation in the first and transamination in the second half-reaction of its ping-pong catalytic cycle. Directed evolution was employed to alter the substrate specificity of DGD from 2-aminoisobutyrate (AIB) to 1-aminocyclohexane-1-carboxylate (AC6C). Four rounds of directed evolution led to the identification of several mutants, with clones in the final rounds containing five persistent mutations. The best clones show ~2.5-fold decrease in KM and ~2-fold increase in kcat, giving a modest ~5-fold increase in catalytic efficiency for AC6C. Additional rounds of directed evolution did not improve catalytic activity toward AC6C. Only one (S306F) of the five persistent mutations is close to the active site. S306F was observed in all 33 clones except one, and the mutation is shown to stabilize the enzyme toward denaturation. The other four persistent mutations are near the surface of the enzyme. The S306F mutation and the distal mutations all have significant effects on the kinetic parameters for AIB and AC6C. Molecular dynamics simulations suggest that the mutations alter the conformational landscape of the enzyme, favoring a more open active site conformation that facilitates the reactivity of the larger substrate. We speculate that the small increases in kcat/KM for AC6C are due to two constraints. The first is the mechanistic requirement for catalyzing oxidative decarboxylation via a concerted decarboxylation/proton transfer transition state. The second is that DGD must catalyze transamination at the same active site in the second half-reaction of the ping-pong catalytic cycle. << Less
Biochim Biophys Acta 1854:146-155(2015) [PubMed] [EuropePMC]