Enzymes
UniProtKB help_outline | 1,193 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
-
Namehelp_outline
N4-{β-D-GlcNAc-(1→2)-α-D-Man-(1→3)-[β-D-GlcNAc-(1→2)-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc}-L-asparaginyl-[protein]
Identifier
RHEA-COMP:13526
Reactive part
help_outline
- Name help_outline N4-{β-D-GlcNAc-(1→2)-α-D-Man-(1→3)-[β-D-GlcNAc-(1→2)-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAcl-(1→4)-β-D-GlcNAc}-L-Asn residue Identifier CHEBI:60651 Charge 0 Formula C54H88N6O37 SMILEShelp_outline [C@H]1([C@H]([C@H]([C@@H]([C@H](O1)CO)O)O)O[C@H]2[C@@H]([C@H]([C@@H]([C@H](O2)CO)O)O)NC(C)=O)O[C@@H]3[C@@H]([C@@H](O[C@@H]([C@H]3O)CO[C@@H]4[C@H]([C@H]([C@@H]([C@H](O4)CO)O)O)O[C@H]5[C@@H]([C@H]([C@@H]([C@H](O5)CO)O)O)NC(=O)C)O[C@H]6[C@@H]([C@H]([C@@H](O[C@@H]6CO)O[C@H]7[C@@H]([C@H]([C@@H](O[C@@H]7CO)NC(C[C@@H](C(=O)*)N*)=O)NC(C)=O)O)NC(C)=O)O)O 2D coordinates Mol file for the small molecule Search links Involved in 7 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP-N-acetyl-α-D-glucosamine Identifier CHEBI:57705 (Beilstein: 4286654) help_outline Charge -2 Formula C17H25N3O17P2 InChIKeyhelp_outline LFTYTUAZOPRMMI-CFRASDGPSA-L SMILEShelp_outline CC(=O)N[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1ccc(=O)[nH]c1=O 2D coordinates Mol file for the small molecule Search links Involved in 88 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
N4-{β-D-GlcNAc-(1→2)-[β-D-GlcNAc-(1→4)]-α-D-Man-(1→3)-[β-D-GlcNAc-(1→2)-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc}-L-asparaginyl-[protein]
Identifier
RHEA-COMP:14374
Reactive part
help_outline
- Name help_outline N4-{β-D-GlcNAc-(1→2)-[β-D-GlcNAc-(1→4)]-α-D-Man-(1→3)-[β-D-GlcNAc-(1→2)-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc}-L-Asn residue Identifier CHEBI:139507 Charge 0 Formula C62H101N7O42 SMILEShelp_outline [C@H]1([C@H]([C@H]([C@@H]([C@H](O1)CO)O[C@H]2[C@@H]([C@H]([C@@H]([C@H](O2)CO)O)O)NC(C)=O)O)O[C@H]3[C@@H]([C@H]([C@@H]([C@H](O3)CO)O)O)NC(C)=O)O[C@@H]4[C@@H]([C@@H](O[C@@H]([C@H]4O)CO[C@@H]5[C@H]([C@H]([C@@H]([C@H](O5)CO)O)O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)NC(=O)C)O[C@H]7[C@@H]([C@H]([C@@H](O[C@@H]7CO)O[C@H]8[C@@H]([C@H]([C@@H](O[C@@H]8CO)NC(C[C@@H](C(=O)*)N*)=O)NC(C)=O)O)NC(C)=O)O)O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP Identifier CHEBI:58223 Charge -3 Formula C9H11N2O12P2 InChIKeyhelp_outline XCCTYIAWTASOJW-XVFCMESISA-K SMILEShelp_outline O[C@@H]1[C@@H](COP([O-])(=O)OP([O-])([O-])=O)O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1=O 2D coordinates Mol file for the small molecule Search links Involved in 577 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:16057 | RHEA:16058 | RHEA:16059 | RHEA:16060 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
A novel second isoenzyme of the human UDP-N-acetylglucosamine:alpha1,3-D-mannoside beta1,4-N-acetylglucosaminyltransferase family: cDNA cloning, expression, and chromosomal assignment.
Yoshida A., Minowa M.T., Takamatsu S., Hara T., Ikenaga H., Takeuchi M.
We isolated a novel cDNA encoding a second isoenzyme of UDP-N-acetylglucosamine:alpha1,3-D-mannoside beta1,4-N-acetylglucosaminyltransferase (GnT-IV; EC 2.4.1.145). The nucleotide and deduced amino acid sequences of the cDNA were homologous to those of the previously cloned human GnT-IV cDNA (63% ... >> More
We isolated a novel cDNA encoding a second isoenzyme of UDP-N-acetylglucosamine:alpha1,3-D-mannoside beta1,4-N-acetylglucosaminyltransferase (GnT-IV; EC 2.4.1.145). The nucleotide and deduced amino acid sequences of the cDNA were homologous to those of the previously cloned human GnT-IV cDNA (63% and 62% identity, respectively). The new cDNA is also confirmed to express GnT-IV activity, suggesting that two isoenzymes of human GnT-IV exist. Although genomic Southern analysis suggested that both genes exist in many mammalian species and the chicken, northern analysis revealed that both genes are expressed in different ways in human tissues. This is the first report concerning the gene family of an N-acetylglucosaminyltransferase in mammals. << Less
-
Purification and characterization of UDP-N-acetylglucosamine: alpha1,3-D-mannoside beta1,4-N-acetylglucosaminyltransferase (N-acetylglucosaminyltransferase-IV) from bovine small intestine.
Oguri S., Minowa M.T., Ihara Y., Taniguchi N., Ikenaga H., Takeuchi M.
A new beta1,4-N-acetylglucosaminyltransferase (GnT) which involves in branch formation of Asn-linked complex-type sugar chains has been purified 224,000-fold from bovine small intestine. This enzyme requires divalent cations, such as Mn2+, and catalyzes the transfer of GlcNAc from UDP-GlcNAc to bi ... >> More
A new beta1,4-N-acetylglucosaminyltransferase (GnT) which involves in branch formation of Asn-linked complex-type sugar chains has been purified 224,000-fold from bovine small intestine. This enzyme requires divalent cations, such as Mn2+, and catalyzes the transfer of GlcNAc from UDP-GlcNAc to biantennary oligosaccharide and produces triantennary oligosaccharide with the beta1-4-linked GlcNAc residue on the Manalpha1-3 arm. The purified enzyme shows a single band of Mr 58,000 and behaves as a monomer. The substrate specificity demonstrated that the beta1-2-linked GlcNAc residue on the Manalpha1-3 arm (GnT-I product) is essential for the enzyme activity. beta1-4-Galactosylaion to this essential beta1-2-linked GlcNAc residue or N-acetylglucosaminylation to the beta-linked Man residue (bisecting GlcNAc, GnT-III product) blocks the enzyme action, while beta1-6-N-acetylglucosaminylation to the Manalpha1-6 arm (GnT-V product) increases the transfer. Based on these findings, we conclude that the purified enzyme is UDP-N-acetylglucosamine:alpha-3-D-mannoside beta-1,4-N-acetylglucosaminyltransferase IV (GnT-IV), that has been a missing link on biosynthesis of complex-type sugar chains. << Less
-
cDNA cloning and expression of bovine UDP-N-acetylglucosamine: alpha1, 3-D-mannoside beta1,4-N-acetylglucosaminyltransferase IV.
Minowa M.T., Oguri S., Yoshida A., Hara T., Iwamatsu A., Ikenaga H., Takeuchi M.
UDP-N-acetylglucosamine:alpha1,3-D-mannoside beta1, 4-N-acetylglucosaminyltransferase (GnT-IV) is one of the essential enzymes in the production of tri- and tetra-antennary Asn-linked sugar chains. Recently, we have successfully purified GnT-IV from bovine small intestine. Based on the partial ami ... >> More
UDP-N-acetylglucosamine:alpha1,3-D-mannoside beta1, 4-N-acetylglucosaminyltransferase (GnT-IV) is one of the essential enzymes in the production of tri- and tetra-antennary Asn-linked sugar chains. Recently, we have successfully purified GnT-IV from bovine small intestine. Based on the partial amino acid sequence of the purified bovine GnT-IV enzyme, its cDNA has been cloned from bovine small intestine. The open reading frame is 1,605 base pairs long, and this sequence produced GnT-IV activity on transient expression in COS-7 cells. Although the deduced amino acid sequence does not have any significant homology with other known N-acetylglucosaminyltransferases (GnTs), the hydrophobicity profile showed a typical type II transmembrane protein structure, which is common to many glycosyltransferases. N-terminal amino acid sequencing of the purified GnT-IV revealed that 92 amino acids, including a transmembrane region, were truncated during purification. Of the three potential N-glycosylation sites Asn-458 was actually glycosylated in the purified enzyme, although this N-glycosylation site could be abolished without any reduction in GnT-IV activity. Serial deletions at both the N and C termini proved that the catalytic domain of GnT-IV is located in the central region of the enzyme. The GnT-IV mRNA level correlated with enzymatic activity in the various bovine tissues tested. << Less
-
Physiological and glycomic characterization of N-acetylglucosaminyltransferase-IVa and -IVb double deficient mice.
Takamatsu S., Antonopoulos A., Ohtsubo K., Ditto D., Chiba Y., Le D.T., Morris H.R., Haslam S.M., Dell A., Marth J.D., Taniguchi N.
N-Acetylglucosaminyltransferase-IV (GnT-IV) has two isoenzymes, GnT-IVa and GnT-IVb, which initiate the GlcNAcbeta1-4 branch synthesis on the Manalpha1-3 arm of the N-glycan core thereby increasing N-glycan branch complexity and conferring endogenous lectin binding epitopes. To elucidate the physi ... >> More
N-Acetylglucosaminyltransferase-IV (GnT-IV) has two isoenzymes, GnT-IVa and GnT-IVb, which initiate the GlcNAcbeta1-4 branch synthesis on the Manalpha1-3 arm of the N-glycan core thereby increasing N-glycan branch complexity and conferring endogenous lectin binding epitopes. To elucidate the physiological significance of GnT-IV, we engineered and characterized GnT-IVb-deficient mice and further generated GnT-IVa/-IVb double deficient mice. In wild-type mice, GnT-IVa expression is restricted to gastrointestinal tissues, whereas GnT-IVb is broadly expressed among organs. GnT-IVb deficiency induced aberrant GnT-IVa expression corresponding to the GnT-IVb distribution pattern that might be attributed to increased Ets-1, which conceivably activates the Mgat4a promoter, and thereafter preserved apparent GnT-IV activity. The compensative GnT-IVa expression might contribute to amelioration of the GnT-IVb-deficient phenotype. GnT-IVb deficiency showed mild phenotypic alterations in hematopoietic cell populations and hemostasis. GnT-IVa/-IVb double deficiency completely abolished GnT-IV activity that resulted in the disappearance of the GlcNAcbeta1-4 branch on the Manalpha1-3 arm that was confirmed by MALDI-TOF MS and GC-MS linkage analyses. Comprehensive glycomic analyses revealed that the abundance of terminal moieties was preserved in GnT-IVa/-IVb double deficiency that was due to the elevated expression of glycosyltransferases regarding synthesis of terminal moieties. Thereby, this may maintain the expression of glycan ligands for endogenous lectins and prevent cellular dysfunctions. The fact that the phenotype of GnT-IVa/-IVb double deficiency largely overlapped that of GnT-IVa single deficiency can be attributed to the induced glycomic compensation. This is the first report that mammalian organs have highly organized glycomic compensation systems to preserve N-glycan branch complexity. << Less
-
Tissue specific expression and chromosomal mapping of a human UDP-N-acetylglucosamine: alpha1,3-d-mannoside beta1, 4-N-acetylglucosaminyltransferase.
Yoshida A., Minowa M.T., Takamatsu S., Hara T., Oguri S., Ikenaga H., Takeuchi M.
A human cDNA for UDP- N -acetylglucosamine:alpha1,3-d-mannoside beta1,4- N-acetylglucosaminyltransferase (GnT-IV) was isolated from a liver cDNA library using a probe based on a partial cDNA sequence of the bovine GnT-IV. The cDNA encoded a complete sequence of a type II membrane protein of 535 am ... >> More
A human cDNA for UDP- N -acetylglucosamine:alpha1,3-d-mannoside beta1,4- N-acetylglucosaminyltransferase (GnT-IV) was isolated from a liver cDNA library using a probe based on a partial cDNA sequence of the bovine GnT-IV. The cDNA encoded a complete sequence of a type II membrane protein of 535 amino acids which is 96% identical to the bovine GnT-IV. Transient expression of the human cDNA in COS7 cells increased total cellular GnT-IV activity 25-fold, demonstrating that this cDNA encodes a functional human GnT-IV. Northern blot analysis of normal tissues indicated that at least five different sizes of mRNA (9.7, 7.6, 5.1, 3.8, and 2.4 kb) forGnT-IV are expressed in vivo. Furthermore, these mRNAs are expressed at different levels between tissues. Large amounts of mRNA were detected in tissues harboring T lineage cells. Also, the promyelocytic leukemia cell line HL-60 and the lymphoblastic leukemia cell line MOLT-4 revealed abundant mRNA. Lastly, the gene was mapped at the locus on human chromosome 2, band q12 by fluorescent in situ hybridization. << Less
-
Control of glycoprotein synthesis.
Gleeson P.A., Schachter H.
Hen oviduct membranes have been shown to catalyze the transfer of GlcNAc from UDP-GlcNAc to GlcNAc-beta 1-2Man alpha 1-6(GlcNAc beta 1-2 Man alpha 1-3) Man beta 1-4GlcNAc beta 1-4GlcNAc-Asn-X (GnGn) to form the triantennary structure GlcNAc beta 1-2Man alpha 1-6[GlcNAc beta 1-2(GlcNAc beta 1-4)Man ... >> More
Hen oviduct membranes have been shown to catalyze the transfer of GlcNAc from UDP-GlcNAc to GlcNAc-beta 1-2Man alpha 1-6(GlcNAc beta 1-2 Man alpha 1-3) Man beta 1-4GlcNAc beta 1-4GlcNAc-Asn-X (GnGn) to form the triantennary structure GlcNAc beta 1-2Man alpha 1-6[GlcNAc beta 1-2(GlcNAc beta 1-4)Man alpha 1-3]Man beta 1-4GlcNAc beta 1-4GlcNAc-Asn-X. The enzyme has been named UDP-GlcNAc:GnGn (GlcNAc to Man alpha 1-3) beta 4-N-acetylglucosaminyltransferase IV (GlcNAc-transferase IV) to distinguish it from three other hen oviduct GlcNAc-transferases designated I, II, and III. Since GlcNAc-transferases III and IV both act on the same substrate, concanavalin A/Sepharose was used to separate the products of the two enzymes. At pH 7.0 and at a Triton X-100 concentration of 0.125% (v/v), GlcNAc-transferase IV activity in hen oviduct membranes is 7 nmol/mg of protein/h. The product was characterized by high resolution proton NMR spectroscopy at 360 MHz and by methylation analysis. In addition to triantennary oligosaccharide, hen oviduct membranes produced about 20% of bisected triantennary material, GlcNAc beta 1-2Man alpha 1-6[GlcNAc beta 1-2(GlcNAc beta 1-4)Man alpha 1-3] [GlcNAc beta 1-4]Man beta 1-4GlcNAc beta 1-4GlcNAc-Asn-X. Maximal GlcNAc-transferase IV activity requires the presence of both terminal beta 1-2-linked GlcNAc residues in the substrate. Removal of the GlcNAc residue on the Man alpha 1-6 arm or of both GlcNAc residues reduces activity by at least 80%. A Gal beta 1-4GlcNAc disaccharide on the Man alpha 1-6 arm reduces activity by 68% while the presence of this disaccharide on the Man alpha 1-3 arm reduces activity to negligible levels. A similar substrate specificity was found for GlcNAc-transferase III, the enzyme which adds a bisecting GlcNAc in beta 1-4 linkage to the beta-linked Man residue. Since a bisecting GlcNAc was found to prevent GlcNAc-transferase IV action, the bisected triantennary material found in the incubation must have been formed by the sequential action of GlcNAc-transferase IV followed by GlcNAc-transferase III. Activities similar to GlcNAc-transferase IV were also detected in rat liver Golgi-rich membranes (0.4 nmol/mg/h) and pig thyroid microsomes (0.1 nmol/mg/h). << Less
-
Kinetic properties and substrate specificities of two recombinant human N-acetylglucosaminyltransferase-IV isozymes.
Oguri S., Yoshida A., Minowa M.T., Takeuchi M.
N-acetylglucosaminyltransferase (GnT)-IV catalyzes the formation of the GlcNAcbeta1-4 branch on the GlcNAcbeta1-2Manalpha1-3 arm of the core structure of N-glycans. Two human GnT-IV isozymes (GnT-IVa and GnT-IVb) had been identified, which exhibit different expression profiles among human tissues ... >> More
N-acetylglucosaminyltransferase (GnT)-IV catalyzes the formation of the GlcNAcbeta1-4 branch on the GlcNAcbeta1-2Manalpha1-3 arm of the core structure of N-glycans. Two human GnT-IV isozymes (GnT-IVa and GnT-IVb) had been identified, which exhibit different expression profiles among human tissues and cancer cell lines. To clarify the enzymatic properties of the respective enzymes, their kinetic parameters were determined using recombinant full-length enzymes expressed in COS7 cells. The K (m) of human GnT-IVb for UDP-GlcNAc was estimated to be 0.24 mM, which is 2-fold higher than that of human GnT-IVa. The K (m) values of GnT-IVb for pyridylaminated (PA) acceptor sugar chains with different branch numbers were 3-to 6-fold higher than those of GnT-IVa. To compare substrate specificities more precisely, we generated recombinant soluble enzymes of human GnT-IVa and GnT-IVb with N-terminal flag tags. Both enzymes showed similar substrate specificities as determined using fourteen PA-sugar chains. They preferred complex-type N-glycans over hybrid-types. Among the complex-type N-glycans tested, the relative activities of both enzymes were increased in proportion to the number of GlcNAc branches on the Man alpha1-6 arm. The Man alpha1-6 arm of the acceptors was not essential for their activities because a linear pentasaccharide lacking this arm, GlcNAcbeta1-2Manalpha1-3Manbeta1-4GlcNAcbeta1-4 GlcNAc-PA, was a substrate for both enzymes. These results indicate that human GnT-IVb exhibits the same acceptor substrate specificities as human GnT-IVa, although GnT-IVb has lower affinities for donors or acceptors than GnT-IVa. This suggests that GnT-IVa is more active than GnT-IVb under physiological conditions and that it primarily contributes to the biosynthesis of N-glycans. << Less
Glycoconj. J. 23:473-480(2006) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.