Enzymes
UniProtKB help_outline | 679 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
-
Name help_outline
(1,4-α-D-glucosyl)n
Identifier
CHEBI:15444
Charge
0
Formula
(C6H10O5)nH2O
Search links
Involved in 8 reaction(s)
Find proteins in UniProtKB for this molecule
Form(s) in this reaction:
-
Identifier: RHEA-COMP:9584Polymer name: [(1→4)-α-D-glucosyl](n)Polymerization index help_outline nFormula H2O(C6H10O5)nCharge (0)(0)nMol File for the polymer
-
Identifier: RHEA-COMP:9587Polymer name: [(1→4)-α-D-glucosyl](n+1)Polymerization index help_outline n+1Formula H2O(C6H10O5)n+1Charge (0)(0)n+1Mol File for the polymer
-
- Name help_outline an NDP-α-D-glucose Identifier CHEBI:76533 Charge -2 Formula C11H19O15P2R SMILEShelp_outline OC[C@H]1O[C@H](OP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@@H]([*])[C@H](O)[C@@H]2O)[C@H](O)[C@@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 255 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a ribonucleoside 5'-diphosphate Identifier CHEBI:57930 Charge -3 Formula C5H8O10P2R SMILEShelp_outline [C@H]1([C@H]([C@@H](O)[C@@H](O1)*)O)COP(OP([O-])(=O)[O-])(=O)[O-] 2D coordinates Mol file for the small molecule Search links Involved in 1,644 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:15873 | RHEA:15874 | RHEA:15875 | RHEA:15876 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
Specific form(s) of this reaction
Publications
-
Isolation and characterization of the three Waxy genes encoding the granule-bound starch synthase in hexaploid wheat.
Murai J., Taira T., Ohta D.
Complete genomic DNA sequences of three homoeologous Waxy structural genes, located on the chromosomes 7A, 4A, and 7D in hexaploid wheat (Triticum aestivum L. cv. Chinese Spring), were separately determined and analyzed. Those structural genes in lengths from start to stop codon were 2781bp in Wx- ... >> More
Complete genomic DNA sequences of three homoeologous Waxy structural genes, located on the chromosomes 7A, 4A, and 7D in hexaploid wheat (Triticum aestivum L. cv. Chinese Spring), were separately determined and analyzed. Those structural genes in lengths from start to stop codon were 2781bp in Wx-7A, 2794bp in Wx-4A, and 2862bp in Wx-7D, each of which consisted of 11 exons and ten introns. They were closely similar to one another in the nucleotide sequences, with 95.6-96.3% homology in mature protein regions, 88. 7-93.0% in transit-peptide regions, and 70.5-75.2% in the introns. These wheat Waxy genes were GC-rich when compared with standard values for plant genomes reported so far. This was reflected in the extremely high G/C occupation frequency at the third position of the codons in the coding regions. The sequence divergence in the exon regions was mostly due to the substitution of nucleotides, whereas that found in the introns was attributed to substitution, insertion and/or deletion of nucleotides. Only the Wx-4A gene contained a trinucleotide insertion (CAA) in the region encoding the transit peptide. Most of the substitutions observed in the exon regions were categorized as synonymous, and higher sequence similarities (96.5-97. 4%) were conserved at the protein level. The phylogenetic tree obtained in terms of the amino acid sequence variations showed a well-resolved phylogenetic relationship among wheat Waxy genes and those from other plants. << Less
-
Characterization of a granule-bound starch synthase isoform found in the pericarp of wheat.
Nakamura T., Vrinten P., Hayakawa K., Ikeda J.
Waxy wheat (Triticum aestivum L.) lacks the waxy protein, which is also known as granule-bound starch synthase I (GBSSI). The starch granules of waxy wheat endosperm and pollen do not contain amylose and therefore stain red-brown with iodine. However, we observed that starch from pericarp tissue o ... >> More
Waxy wheat (Triticum aestivum L.) lacks the waxy protein, which is also known as granule-bound starch synthase I (GBSSI). The starch granules of waxy wheat endosperm and pollen do not contain amylose and therefore stain red-brown with iodine. However, we observed that starch from pericarp tissue of waxy wheat stained blue-black and contained amylose. Significantly higher starch synthase activity was detected in pericarp starch granules than in endosperm starch granules. A granule-bound protein that differed from GBSSI in molecular mass and isoelectric point was detected in the pericarp starch granules but not in granules from endosperm. This protein was designated GBSSII. The N-terminal amino acid sequence of GBSSII, although not identical to wheat GBSSI, showed strong homology to waxy proteins or GBSSIs of cereals and potato, and contained the motif KTGGL, which is the putative substrate-binding site of GBSSI of plants and of glycogen synthase of Escherichia coli. GBSSII cross-reacted specifically with antisera raised against potato and maize GBSSI. This study indicates that GBSSI and GBSSII are expressed in a tissue-specific manner in different organs, with GBSSII having an important function in amylose synthesis in the pericarp. << Less
-
A 56-kDa protein is a novel granule-bound starch synthase existing in the pericarps, aleurone layers, and embryos of immature seed in diploid wheat (Triticum monococcum L.).
Fujita N., Taira T.
A novel 56-kDa granule-bound starch synthase (GBSS; NDPglucose-starch glucosyltransferase, EC 2.4.1.21) responsible for amylose synthesis was found in the pericarps, aleurone layers and embryos of immature diploid wheat (Triticum monococcum L.). The GBSS and other proteins bound to starch granules ... >> More
A novel 56-kDa granule-bound starch synthase (GBSS; NDPglucose-starch glucosyltransferase, EC 2.4.1.21) responsible for amylose synthesis was found in the pericarps, aleurone layers and embryos of immature diploid wheat (Triticum monococcum L.). The GBSS and other proteins bound to starch granules of various tissues of immature normal and waxy diploid wheat seeds were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and their activities were examined. In the waxy mutant, the waxy protein (59.5 kDa, GBSSI) was absent, but amylose and GBSS activity were evident in all tissues except the endosperm. Of the proteins bound to starch granules, only the 56-kDa protein was associated with the presence of amylose and GBSS activities in the pericarps, aleurone layers and embryos. Mutations at the waxy locus did not affect the 56-kDa protein in these tissues. Changes in the amount of 56-kDa protein during the course of seed development, and the distribution of the 56-kDa protein in each tissue of immature seeds were quite different from those of the waxy protein. On the other hand, the N-terminal amino acid sequence of the 56-kDa protein had a 40-50% similarity to GBSSI of some other plant species and was antigenically related to the waxy protein. These results strongly suggest that the 56-kDa protein in diploid wheat is a GBSSI class enzyme and, hence, an isoform of the waxy protein. The waxy protein and 56-kDa protein, however, are expressed in different seed tissues and at different stages of seed development. << Less