Enzymes
UniProtKB help_outline | 2,115 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline 2-oxoglutarate Identifier CHEBI:16810 (Beilstein: 3664503; CAS: 64-15-3) help_outline Charge -2 Formula C5H4O5 InChIKeyhelp_outline KPGXRSRHYNQIFN-UHFFFAOYSA-L SMILEShelp_outline [O-]C(=O)CCC(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 425 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline D-alanine Identifier CHEBI:57416 Charge 0 Formula C3H7NO2 InChIKeyhelp_outline QNAYBMKLOCPYGJ-UWTATZPHSA-N SMILEShelp_outline C[C@@H]([NH3+])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 24 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline D-glutamate Identifier CHEBI:29986 (Beilstein: 8319427) help_outline Charge -1 Formula C5H8NO4 InChIKeyhelp_outline WHUUTDBJXJRKMK-GSVOUGTGSA-M SMILEShelp_outline [NH3+][C@H](CCC([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 13 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline pyruvate Identifier CHEBI:15361 (Beilstein: 3587721; CAS: 57-60-3) help_outline Charge -1 Formula C3H3O3 InChIKeyhelp_outline LCTONWCANYUPML-UHFFFAOYSA-M SMILEShelp_outline CC(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 215 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:15869 | RHEA:15870 | RHEA:15871 | RHEA:15872 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
M-CSA help_outline |
Publications
-
Cloning and functional characterization of Arabidopsis thaliana D-amino acid aminotransferase--D-aspartate behavior during germination.
Funakoshi M., Sekine M., Katane M., Furuchi T., Yohda M., Yoshikawa T., Homma H.
The understanding of D-amino acid metabolism in higher plants lags far behind that in mammals, for which the biological functions of these unique amino acids have already been elucidated. In this article, we report on the biochemical behavior of D-amino acids (particularly D-Asp) and relevant meta ... >> More
The understanding of D-amino acid metabolism in higher plants lags far behind that in mammals, for which the biological functions of these unique amino acids have already been elucidated. In this article, we report on the biochemical behavior of D-amino acids (particularly D-Asp) and relevant metabolic enzymes in Arabidopsis thaliana. During germination and growth of the plant, a transient increase in D-Asp levels was observed, suggesting that D-Asp is synthesized in the plant. Administration of D-Asp suppressed growth, although the inhibitory mechanism responsible for this remains to be clarified. Exogenous D-Asp was efficiently incorporated and metabolized, and was converted to other D-amino acids (D-Glu and D-Ala). We then studied the related metabolic enzymes, and consequently cloned and characterized A. thaliana D-amino acid aminotransferase, which is presumably involved in the metabolism of D-Asp in the plant by catalyzing transamination between D-amino acids. This is the first report of cDNA cloning and functional characterization of a D-amino acid aminotransferase in eukaryotes. The results presented here provide important information for understanding the significance of D-amino acids in the metabolism of higher plants. << Less
-
Thermostable D-amino acid aminotransferase from a thermophilic Bacillus species. Purification, characterization, and active site sequence determination.
Tanizawa K., Masu Y., Asano S., Tanaka H., Soda K.
D-Amino acid aminotransferase was found in several thermophilic Bacillus species and purified to homogeneity from the best producer, Bacillus sp. YM-1, which was newly isolated from a sauna dust. The enzyme has a molecular weight of about 62,000 and consists of two subunits identical in molecular ... >> More
D-Amino acid aminotransferase was found in several thermophilic Bacillus species and purified to homogeneity from the best producer, Bacillus sp. YM-1, which was newly isolated from a sauna dust. The enzyme has a molecular weight of about 62,000 and consists of two subunits identical in molecular weight (30,000). It catalyzes transamination between various D-amino acids and alpha-keto acids, although the substrate specificity is narrower than the enzyme from the mesophile, Bacillus sphaericus (Yonaha, K., Misono, H., Yamamoto, T., and Soda, K. (1975) J. Biol. Chem. 250, 6983-6989). The Bacillus sp. YM-1 enzyme is most active at 60 degrees C and stable at high temperatures. Automated Edman degradation provided the N-terminal sequence of the first 20 amino acids, and carboxypeptidase Y digestion provided the C-terminal sequence of the last 3 amino acids. The amino acid sequence in the vicinity of the lysyl residue, Lys(Pxy), that binds pyridoxal 5'-phosphate was determined as Cys-Asp-Ile-Lys(Pxy)-Ser-Leu-Asn-Leu-Leu-Gly-Ala-Val-Leu-Ala-Lys-from the pyridoxyl peptide obtained by digestion with trypsin. The active site sequence is markedly different from those of L-amino acid aminotransferases and other pyridoxal 5'-phosphate-dependent enzymes. << Less
-
Crystal structure of a D-amino acid aminotransferase: how the protein controls stereoselectivity.
Sugio S., Petsko G.A., Manning J.M., Soda K., Ringe D.
The three-dimensional structure of D-amino acid aminotransferase (D-AAT) in the pyridoxamine phosphate form has been determined crystallographically. The fold of this pyridoxal phosphate (PLP)-containing enzyme is completely different from those of any of the other enzymes that utilize PLP as part ... >> More
The three-dimensional structure of D-amino acid aminotransferase (D-AAT) in the pyridoxamine phosphate form has been determined crystallographically. The fold of this pyridoxal phosphate (PLP)-containing enzyme is completely different from those of any of the other enzymes that utilize PLP as part of their mechanism and whose structures are known. However, there are some striking similarities between the active sites of D-AAT and the corresponding enzyme that transaminates L-amino acids, L-aspartate aminotransferase. These similarities represent convergent evolution to a common solution of the problem of enforcing transamination chemistry on the PLP cofactor. Implications of these similarities are discussed in terms of their possible roles in the stabilization of intermediates of a transamination reaction. In addition, sequence similarity between D-AAT and branched chain L-amino acid aminotransferase suggests that this latter enzyme will also have a fold similar to that of D-AAT. << Less
-
Characterization of the genes encoding D-amino acid transaminase and glutamate racemase, two D-glutamate biosynthetic enzymes of Bacillus sphaericus ATCC 10208.
Fotheringham I.G., Bledig S.A., Taylor P.P.
In Bacillus sphaericus and other Bacillus spp., D-amino acid transaminase has been considered solely responsible for biosynthesis of D-glutamate, an essential component of cell wall peptidoglycan, in contrast to the glutamate racemase employed by many other bacteria. We report here the cloning of ... >> More
In Bacillus sphaericus and other Bacillus spp., D-amino acid transaminase has been considered solely responsible for biosynthesis of D-glutamate, an essential component of cell wall peptidoglycan, in contrast to the glutamate racemase employed by many other bacteria. We report here the cloning of the dat gene encoding D-amino acid transaminase and the glr gene encoding a glutamate racemase from B. sphaericus ATCC 10208. The glr gene encodes a 28. 8-kDa protein with 40 to 50% sequence identity to the glutamate racemases of Lactobacillus, Pediococcus, and Staphylococcus species. The dat gene encodes a 31.4-kDa peptide with 67% primary sequence homology to the D-amino acid transaminase of the thermophilic Bacillus sp. strain YM1. << Less
-
Crystallographic study of steps along the reaction pathway of D-amino acid aminotransferase.
Peisach D., Chipman D.M., van Ophem P.W., Manning J.M., Petsko G.A., Ringe D.
The three-dimensional structures of two forms of the D-amino acid aminotransferase (D-aAT) from Bacillus sp. YM-1 have been determined crystallographically: the pyridoxal phosphate (PLP) form and a complex with the reduced analogue of the external aldimine, N-(5'-phosphopyridoxyl)-d-alanine (PPDA) ... >> More
The three-dimensional structures of two forms of the D-amino acid aminotransferase (D-aAT) from Bacillus sp. YM-1 have been determined crystallographically: the pyridoxal phosphate (PLP) form and a complex with the reduced analogue of the external aldimine, N-(5'-phosphopyridoxyl)-d-alanine (PPDA). Together with the previously reported pyridoxamine phosphate form of the enzyme [Sugio et al. (1995) Biochemistry 34, 9661], these structures allow us to describe the pathway of the enzymatic reaction in structural terms. A major determinant of the enzyme's stereospecificity for D-amino acids is a group of three residues (Tyr30, Arg98, and His100, with the latter two contributed by the neighboring subunit) forming four hydrogen bonds to the substrate alpha-carboxyl group. The replacement by hydrophobic groups of the homologous residues of the branched chain L-amino acid aminotransferase (which has a similar fold) could explain its opposite stereospecificity. As in L-aspartate aminotransferase (L-AspAT), the cofactor in D-aAT tilts (around its phosphate group and N1 as pivots) away from the catalytic lysine 145 and the protein face in the course of the reaction. Unlike L-AspAT, D-aAT shows no other significant conformational changes during the reaction. << Less
-
Substrate inhibition of D-amino acid transaminase and protection by salts and by reduced nicotinamide adenine dinucleotide: isolation and initial characterization of a pyridoxo intermediate related to inactivation.
van Ophem P.W., Erickson S.D., Martinez del Pozo A., Haller I., Chait B.T., Yoshimura T., Soda K., Ringe D., Petsko G., Manning J.M.
D-Amino acid transaminase, a pyridoxal phosphate (PLP) enzyme, is inactivated by its natural substrate, D-alanine, concomitant with its alpha-decarboxylation [Martinez del Pozo, A., Yoshimura, T., Bhatia, M. B., Futaki, S., Manning, J. M., Ringe, D., and Soda, K. (1992) Biochemistry 31, 6018-6023; ... >> More
D-Amino acid transaminase, a pyridoxal phosphate (PLP) enzyme, is inactivated by its natural substrate, D-alanine, concomitant with its alpha-decarboxylation [Martinez del Pozo, A., Yoshimura, T., Bhatia, M. B., Futaki, S., Manning, J. M., Ringe, D., and Soda, K. (1992) Biochemistry 31, 6018-6023; Bhatia, M. B., Martinez del Pozo, A., Ringe, D., Yoshimura, T., Soda, K., and Manning, J. M. (1993) J. Biol. Chem. 268, 17687-17694]. beta-Decarboxylation of d-aspartate to d-alanine leads also to this inactivation [Jones, W. M., van Ophem, P. W., Pospischil, M. A., Ringe, D., Petsko, G., Soda, K., and Manning, J. M. (1996) Protein Sci. 5, 2545-2551]. Using a high-performance liquid chromatography-based method for the determination of pyridoxo cofactors, we detected a new intermediate closely related to the inactivation by d-alanine; its formation occurred at the same rate as the inactivation and upon reactivation it reverted to PLP. Conditions were found under which it was characterized by ultraviolet-visible spectral analysis and mass spectroscopy; it is a pyridoxamine phosphate-like compound with a C2 fragment derived from the substrate attached to the C'-4 of the pyridinium ring and it has a molecular mass of 306 consistent with this structure. In the presence of d-serine, slow accumulation of a quinonoid intermediate is also related to inactivation. The inactivation can be prevented by salts, which possibly stabilize the protonated aldimine coenzyme complex. The reduced cofactor, nicotinamide adenine dinucleotide, prevents D-aspartate-induced inactivation. Both of these events also are related to formation of the novel intermediate. << Less