Reaction participants Show >> << Hide
- Name help_outline (7R,8S)-7,8-diammoniononanoate Identifier CHEBI:149469 Charge 1 Formula C9H21N2O2 InChIKeyhelp_outline KCEGBPIYGIWCDH-JGVFFNPUSA-O SMILEShelp_outline C(CCCCC[C@H]([C@H](C)[NH3+])[NH3+])(=O)[O-] 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,280 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CO2 Identifier CHEBI:16526 (Beilstein: 1900390; CAS: 124-38-9) help_outline Charge 0 Formula CO2 InChIKeyhelp_outline CURLTUGMZLYLDI-UHFFFAOYSA-N SMILEShelp_outline O=C=O 2D coordinates Mol file for the small molecule Search links Involved in 997 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (4R,5S)-dethiobiotin Identifier CHEBI:149473 Charge -1 Formula C10H17N2O3 InChIKeyhelp_outline AUTOLBMXDDTRRT-JGVFFNPUSA-M SMILEShelp_outline [C@@H]1([C@H](NC(=O)N1)CCCCCC(=O)[O-])C 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ADP Identifier CHEBI:456216 (Beilstein: 3783669) help_outline Charge -3 Formula C10H12N5O10P2 InChIKeyhelp_outline XTWYTFMLZFPYCI-KQYNXXCUSA-K SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 841 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 992 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:15805 | RHEA:15806 | RHEA:15807 | RHEA:15808 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline | ||||
M-CSA help_outline |
Publications
-
Crystal structure of two quaternary complexes of dethiobiotin synthetase, enzyme-MgADP-AlF3-diaminopelargonic acid and enzyme-MgADP-dethiobiotin-phosphate; implications for catalysis.
Kaeck H., Sandmark J., Gibson K.J., Schneider G., Lindqvist Y.
The crystal structures of two complexes of dethiobiotin synthetase, enzyme-diaminopelargonic acid-MgADP-AlF3 and enzyme-dethiobiotin-MgADP-Pi, respectively, have been determined to 1.8 A resolution. In dethiobiotin synthetase, AlF3 together with carbamylated diaminopelargonic acid mimics the phosp ... >> More
The crystal structures of two complexes of dethiobiotin synthetase, enzyme-diaminopelargonic acid-MgADP-AlF3 and enzyme-dethiobiotin-MgADP-Pi, respectively, have been determined to 1.8 A resolution. In dethiobiotin synthetase, AlF3 together with carbamylated diaminopelargonic acid mimics the phosphorylated reaction intermediate rather than the transition state complex for phosphoryl transfer. Observed differences in the binding of substrate, diaminopelargonic acid, and the product, dethiobiotin, suggest considerable displacements of substrate atoms during the ring closure step of the catalytic reaction. In both complexes, two metal ions are observed at the active site, providing evidence for a two-metal mechanism for this enzyme. << Less
-
Snapshot of a phosphorylated substrate intermediate by kinetic crystallography.
Kaeck H., Gibson K.J., Lindqvist Y., Schneider G.
The ATP-dependent enzyme dethiobiotin synthetase from Escherichia coli catalyses the formation of dethiobiotin from CO2 and 7, 8-diaminopelargonic acid. The reaction is initiated by the formation of a carbamate and proceeds through a phosphorylated intermediate, a mixed carbamic phosphoric anhydri ... >> More
The ATP-dependent enzyme dethiobiotin synthetase from Escherichia coli catalyses the formation of dethiobiotin from CO2 and 7, 8-diaminopelargonic acid. The reaction is initiated by the formation of a carbamate and proceeds through a phosphorylated intermediate, a mixed carbamic phosphoric anhydride. Here, we report the crystal structures at 1.9- and 1.6-A resolution, respectively, of the enzyme-MgATP-diaminopelargonic acid and enzyme-MgADP-carbamic-phosphoric acid anhydride complexes, observed by using kinetic crystallography. Reaction initiation by addition of either NaHCO3 or diaminopelargonic acid to crystals already containing cosubstrates resulted in the accumulation of the phosphorylated intermediate at the active site. The phosphoryl transfer step shows inversion of the configuration at the phosphorus atom, consistent with an in-line attack by the carbamate oxygen onto the phosphorus atom of ATP. A key feature in the structure of the complex of the enzyme with the reaction intermediate is two magnesium ions, bridging the phosphates at the cleavage site. These magnesium ions compensate the negative charges at both phosphate groups after phosphoryl transfer and contribute to the stabilization of the reaction intermediate. << Less
Proc. Natl. Acad. Sci. U.S.A. 95:5495-5500(1998) [PubMed] [EuropePMC]
-
The purification and properties of dethiobiotin synthetase.
Krell K., Eisenberg M.A.
-
Active site mutants of Escherichia coli dethiobiotin synthetase: effects of mutations on enzyme catalytic and structural properties.
Yang G., Sandalova T., Lohman K., Lindqvist Y., Rendina A.R.
Five active site residues, Thr11, Glu12, Lys15, Lys37, and Ser41, implicated by the protein crystal structure studies of Escherichia coli DTBS, were mutated to determine their function in catalysis and substrate binding. Nine mutant enzymes, T11V, E12A, E12D, K15Q, K37L, K37Q, K37R, S41A, and S41C ... >> More
Five active site residues, Thr11, Glu12, Lys15, Lys37, and Ser41, implicated by the protein crystal structure studies of Escherichia coli DTBS, were mutated to determine their function in catalysis and substrate binding. Nine mutant enzymes, T11V, E12A, E12D, K15Q, K37L, K37Q, K37R, S41A, and S41C, were overproduced in an E. coli strain lacking a functional endogenous DTBS gene and purified to homogeneity. Replacement of Thr11 with valine resulted in a 24,000-fold increase in the Km(ATP) with little or no change in the Kd(ATP), KM(DAPA) and DTBS k(cat), suggesting an essential role for this residue in the steady-state affinity for ATP. The two Glu12 mutants showed essentially wild-type DTBS activity (slightly elevated k(cat)'s). Unlike wild-type DTBS, E12A had the same apparent KM(DAPA) at subsaturating and saturating ATP concentrations, indicating a possible role for Glu12 in the binding synergy between DAPA and ATP. The mutations in Lys15 and Lys37 resulted in loss of catalytic activity (0.01% and <0.9% of wild-type DTBS k(cat) for K15Q and the Lys37 mutant enzymes, respectively) and higher KM's for both DAPA (40-fold and >100-fold higher than wild-type for the K15Q and Lys37 mutant enzymes, respectively) and ATP (1800-fold and >10-fold higher than wild-type for K15Q and the K37 mutant enzymes, respectively). These results strongly suggest that Lys15 and Lys37 are crucial to both catalysis and substrate binding. S41A and S41C had essentially the same k(cat) as wild-type and had moderate increases in the DAPA and ATP KM and Kd (ATP) values. Replacement of Ser41 with cysteine resulted in larger effects than replacement with alanine. These data suggest that the H-bond between N7 of DAPA and the Ser41 side chain is not very important for catalysis. The catalytic behavior of these mutant enzymes was also studied by pulse-chase experiments which produced results consistent with the steady-state kinetic analyses. X-ray crystallographic studies of four mutant enzymes, S41A, S41C, K37Q, and K37L, showed that the crystals were essentially isomorphous to that of the wild-type DTBS. The models of these mutant enzymes were well refined (1.9 -2.6 A) and showed good similarity to the wild-type enzyme (rmsd of C alpha atoms: 0.16-0.24 A). The crystal structure of S41C complexed with DAPA, Mn2+/Mg2+, and AMPPCP revealed a localized conformational change (rotations of side chains of Cys41 and Thr11) which can account for the changes in the kinetic parameters observed for S41C. The crystal structures of the Lys37 mutant enzymes showed that the positive charge of the side chain of Lys37 is indispensable. Mutations of Lys37 to either glutamine or leucine resulted in a shift of the metal ion (up to 0.5 A) together with side chains of other active site residues which could disrupt the subtle balance between the positive and negative charges in the active site. The conformational change of the phosphate binding loop (Gly8-X-X-X-X-X-Gly14-Lys15-Thr16) upon nucleotide binding observed previously [Huang, W., Jia, J., Gibson, K. J., Taylor, W. S., Rendina, A. R., Schneider, G., & Lindqvist, Y. (1995) Biochemistry 34, 10985] appears to be important to attain the proper active site scaffold. << Less
Comments
Multi-step reaction: RHEA:63680 and RHEA:63684