Enzymes
UniProtKB help_outline | 14,334 proteins |
Reaction participants Show >> << Hide
- Name help_outline L-homoserine Identifier CHEBI:57476 Charge 0 Formula C4H9NO3 InChIKeyhelp_outline UKAUYVFTDYCKQA-VKHMYHEASA-N SMILEShelp_outline [NH3+][C@@H](CCO)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 12 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,186 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-aspartate 4-semialdehyde Identifier CHEBI:537519 Charge 0 Formula C4H7NO3 InChIKeyhelp_outline HOSWPDPVFBCLSY-VKHMYHEASA-N SMILEShelp_outline [H]C(=O)C[C@H]([NH3+])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 14 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,116 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:15757 | RHEA:15758 | RHEA:15759 | RHEA:15760 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Overproduction, purification, and characterization of recombinant bifunctional threonine-sensitive aspartate kinase-homoserine dehydrogenase from Arabidopsis thaliana.
Paris S., Wessel P.M., Dumas R.
In plant, the first and the third steps of the synthesis of methionine and threonine are catalyzed by a bifunctional enzyme, aspartate kinase-homoserine dehydrogenase (AK-HSDH). In this study, we report the first purification and characterization of a highly active threonine-sensitive AK-HSDH from ... >> More
In plant, the first and the third steps of the synthesis of methionine and threonine are catalyzed by a bifunctional enzyme, aspartate kinase-homoserine dehydrogenase (AK-HSDH). In this study, we report the first purification and characterization of a highly active threonine-sensitive AK-HSDH from plants (Arabidopsis thaliana). The specific activities corresponding to the forward reaction of AK and reverse reaction of HSDH of AK-HSDH were 5.4 micromol of aspartyl phosphate produced min(-1) mg(-1) of protein and 18.8 micromol of NADPH formed min(-1) mg(-1) of protein, respectively. These values are 200-fold higher than those reported previously for partially purified plant enzymes. AK-HSDH exhibited hyperbolic kinetics for aspartate, ATP, homoserine, and NADP with K(M) values of 11.6 mM, 5.5 mM, 5.2 mM, and 166 microM, respectively. Threonine was found to inhibit both AK and HSDH activities by decreasing the affinity of the enzyme for its substrates and cofactors. In the absence of threonine, AK-HSDH behaved as an oligomer of 470 kDa. Addition of the effector converted the enzyme into a tetrameric form of 320 kDa. << Less
Protein Expr. Purif. 24:105-110(2002) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Regulation of aspartate family amino acid biosynthesis in Brevibacterium flavum. 3. Properties of homoserine dehydrogenase.
Miyajima R., Shiio I.
J. Biochem. 68:311-319(1970) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
The threonine-sensitive homoserine dehydrogenase and aspartokinase activities of Escherichia coli K12. The two catalytic activities are carried by two independent regions of the polypeptide chain.
Veron M., Falcoz-Kelly F., Cohen G.N.
Eur J Biochem 28:520-527(1972) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Cloning and nucleotide sequence of the Bacillus subtilis hom gene coding for homoserine dehydrogenase. Structural and evolutionary relationships with Escherichia coli aspartokinases-homoserine dehydrogenases I and II.
Parsot C., Cohen G.N.
The Bacillus subtilis hom gene, encoding homoserine dehydrogenase (L-homoserine:NADP+ oxidoreductase, EC 1.1.1.3) has been cloned and its nucleotide sequence determined. The B. subtilis enzyme expressed in Escherichia coli is sensitive by inhibition by threonine and allows complementation of a str ... >> More
The Bacillus subtilis hom gene, encoding homoserine dehydrogenase (L-homoserine:NADP+ oxidoreductase, EC 1.1.1.3) has been cloned and its nucleotide sequence determined. The B. subtilis enzyme expressed in Escherichia coli is sensitive by inhibition by threonine and allows complementation of a strain lacking homoserine dehydrogenases I and II. Nucleotide sequence analysis indicates that the hom stop codon overlaps the start codon of thrC (threonine synthase) suggesting that these genes, as well as thrB (homoserine kinase) located downstream from thrC, belong to the same transcription unit. The deduced amino acid sequence of the B. subtilis homoserine dehydrogenase shows extensive similarity with the C-terminal part of E. coli aspartokinases-homoserine dehydrogenases I and II; this similarity starts at the exact point where the similarity between E. coli or B. subtilis aspartokinases and E. coli aspartokinases-homoserine dehydrogenases stops. These data suggest that the E. coli bifunctional polypeptide could have resulted from the direct fusion of ancestral aspartokinase and homoserine dehydrogenase. The B. subtilis homoserine dehydrogenase has a C-terminal extension of about 100 residues (relative to the E. coli enzymes) that could be involved in the regulation of the enzyme activity. << Less
J. Biol. Chem. 263:14654-14660(1988) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Identification of six novel allosteric effectors of Arabidopsis thaliana aspartate kinase-homoserine dehydrogenase isoforms. Physiological context sets the specificity.
Curien G., Ravanel S., Robert M., Dumas R.
The Arabidopsis genome contains two genes predicted to code for bifunctional aspartate kinase-homoserine dehydrogenase enzymes (isoforms I and II). These two activities catalyze the first and the third steps toward the synthesis of the essential amino acids threonine, isoleucine, and methionine. W ... >> More
The Arabidopsis genome contains two genes predicted to code for bifunctional aspartate kinase-homoserine dehydrogenase enzymes (isoforms I and II). These two activities catalyze the first and the third steps toward the synthesis of the essential amino acids threonine, isoleucine, and methionine. We first characterized the kinetic and regulatory properties of the recombinant enzymes, showing that they mainly differ with respect to the inhibition of the homoserine dehydrogenase activity by threonine. A systematic search for other allosteric effectors allowed us to identify an additional inhibitor (leucine) and 5 activators (alanine, cysteine, isoleucine, serine, and valine) equally efficient on aspartate kinase I activity (4-fold activation). The six effectors of aspartate kinase I were all activators of aspartate kinase II activity (13-fold activation) and displayed a similar specificity for the enzyme. No synergy between different effectors could be observed. The activation, which resulted from a decrease in the Km values for the substrates, was detected using low substrates concentrations. Amino acid quantification revealed that alanine and threonine were much more abundant than the other effectors in Arabidopsis leaf chloroplasts. In vitro kinetics in the presence of physiological concentrations of the seven allosteric effectors confirmed that aspartate kinase I and II activities were highly sensitive to changes in alanine and threonine concentrations. Thus, physiological context rather than enzyme structure sets the specificity of the allosteric control. Stimulation by alanine may play the role of a feed forward activation of the aspartate-derived amino acid pathway in plant. << Less
J. Biol. Chem. 280:41178-41183(2005) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
A C-terminal deletion in Corynebacterium glutamicum homoserine dehydrogenase abolishes allosteric inhibition by L-threonine.
Archer J.A., Solow-Cordero D.E., Sinskey A.J.
In Escherichia coli, Bacillus subtilis and Corynebacterium glutamicum, homoserine dehydrogenase (HD), the enzyme after the branch point of the threonine/methionine and lysine biosynthetic pathways, is allosterically inhibited by L-threonine. To investigate the regulation of the C. glutamicum HD en ... >> More
In Escherichia coli, Bacillus subtilis and Corynebacterium glutamicum, homoserine dehydrogenase (HD), the enzyme after the branch point of the threonine/methionine and lysine biosynthetic pathways, is allosterically inhibited by L-threonine. To investigate the regulation of the C. glutamicum HD enzyme by L-threonine, the structural gene, hom, was mutated by UV irradiation of whole cells to obtain a deregulated allele, homdr. L-Threonine inhibits the wild-type (wt) enzyme with a Ki of 0.16 mM. The deregulated enzyme remains 80% active in the presence of 50 mM L-threonine. The homdr gene mutant was isolated and cloned in E. coli. In a C. glutamicum wt host background, but not in E. coli, the cloned homdr gene is genetically unstable. The cloned homdr gene is overexpressed tenfold in C. glutamicum and is active in the presence of over 60 mM L-threonine. Sequence analysis revealed that the homdr mutation is a single nucleotide (G1964) deletion in codon 429 within the hom reading frame. The resulting frame-shift mutation radically alters the structure of the C terminus, resulting in ten amino acid (aa) changes and a deletion of the last 7 aa relative to the wt protein. These observations suggest that the C terminus may be associated with the L-threonine allosteric response. The homdr mutation is unstable and probably deleterious to the cell. This may explain why only one mutation was obtained despite repeated mutagenesis. << Less
Gene 107:53-59(1991) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.