Enzymes
UniProtKB help_outline | 2,367 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline 1D-myo-inositol 1,4-bisphosphate Identifier CHEBI:58282 Charge -4 Formula C6H10O12P2 InChIKeyhelp_outline PELZSPZCXGTUMR-RTPHHQFDSA-J SMILEShelp_outline O[C@H]1[C@@H](O)[C@@H](OP([O-])([O-])=O)[C@H](O)[C@@H](O)[C@@H]1OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 1D-myo-inositol 4-phosphate Identifier CHEBI:58469 Charge -2 Formula C6H11O9P InChIKeyhelp_outline INAPMGSXUVUWAF-CNWJWELYSA-L SMILEShelp_outline O[C@@H]1[C@H](O)[C@H](O)[C@@H](OP([O-])([O-])=O)[C@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,002 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:15553 | RHEA:15554 | RHEA:15555 | RHEA:15556 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
Reactome help_outline |
Publications
-
Crystal structure of inositol polyphosphate 1-phosphatase at 2.3-A resolution.
York J.D., Ponder J.W., Chen Z.-W., Mathews F.S., Majerus P.W.
Bovine inositol polyphosphate 1-phosphatase (1-ptase), M(r) = 44,000, is a Mg(2+)-dependent/Li(+)-sensitive enzyme that catalyzes the hydrolysis of the 1-position phosphate from inositol 1,4-bisphosphate and inositol 1,3,4-trisphosphate. We have determined the crystal structure of recombinant bovi ... >> More
Bovine inositol polyphosphate 1-phosphatase (1-ptase), M(r) = 44,000, is a Mg(2+)-dependent/Li(+)-sensitive enzyme that catalyzes the hydrolysis of the 1-position phosphate from inositol 1,4-bisphosphate and inositol 1,3,4-trisphosphate. We have determined the crystal structure of recombinant bovine 1-ptase in the presence of Mg2+ by multiple isomorphous replacement. The structure is currently refined to an R value of 0.198 for 15,563 reflections within a resolution range of 8.0-2.3 A. 1-Ptase is monomeric in the crystal, consistent with biochemical data, and folds into an alternatively layered alpha/beta/alpha/beta sandwich. The central core of 1-ptase consists of a six-stranded antiparallel beta sheet perpendicular to two parallel three-turn alpha-helices. The beta sheet is flanked by two antiparallel six-turn alpha-helices aligned parallel to the beta sheet, and the central helices are flanked by a five-stranded largely parallel beta sheet. Two neighboring metal binding sites are located in adjacent acidic pockets formed by the intersection of several secondary structure elements including an unusual kink structure formed by the "DPIDST" sequence motif. The fold of 1-ptase is similar to that of two other metal-dependent/Li(+)-sensitive phosphatases, inositol monophosphate phosphatase and fructose 1,6-bisphosphatase despite minimal amino acid identity. Comparison of the active-site pockets of these proteins will likely provide insight into substrate binding and the mechanisms of metal-dependent catalysis and Li+ inhibition. << Less
-
Inositol polyphosphate 1-phosphatase from calf brain. Purification and inhibition by Li+, Ca2+, and Mn2+.
Inhorn R.C., Majerus P.W.
We recently identified an enzyme which we have designated inositol polyphosphate 1-phosphatase that hydrolyzes both inositol 1,3,4-trisphosphate (Ins-1,3,4-P3) and inositol 1,4-bisphosphate (Ins-1,4-P2), yielding inositol 3,4-bisphosphate and inositol 4-phosphate, respectively, as products (Inhorn ... >> More
We recently identified an enzyme which we have designated inositol polyphosphate 1-phosphatase that hydrolyzes both inositol 1,3,4-trisphosphate (Ins-1,3,4-P3) and inositol 1,4-bisphosphate (Ins-1,4-P2), yielding inositol 3,4-bisphosphate and inositol 4-phosphate, respectively, as products (Inhorn, R. C., Bansal, V.S., and Majerus, P.W. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 2170-2174). We have now purified the inositol polyphosphate 1-phosphatase 3600-fold from calf brain supernatant. The purified enzyme has an apparent molecular mass of 44,000 daltons as determined by gel filtration and is free of other inositol phosphate phosphatase activities. The enzyme hydrolyzes Ins-1,4-P2 with an apparent Km of approximately 4-5 microM, while it degrades Ins-1,3,4-P3 with an apparent Km of approximately 20 microM. The enzyme hydrolyzes these substrates at approximately the same maximal velocity. Inositol polyphosphate 1-phosphatase shows a sigmoidal dependence upon magnesium ion, with 0.3 mM Mg2+ causing half-maximal stimulation. A Hill plot of the data is linear with a value of n = 1.9, suggesting that the enzyme binds magnesium cooperatively. Calcium and manganese inhibit enzyme activity, with 50% inhibition at approximately 6 microM. Lithium inhibits Ins-1,4-P2 hydrolysis uncompetitively with a Ki of approximately 6 mM. This mechanism of lithium inhibition is similar to that observed for the inositol monophosphate phosphatase (originally designated myo-inositol-1-phosphatase; Hallcher, L.M., and Sherman, W.R. (1980) J. Biol. Chem. 255, 10896-10901), suggesting that these two enzymes are related. Lithium also inhibits Ins-1,3,4-P3 hydrolysis with an estimated Ki of 0.5-1 mM. << Less
-
Crystallization and initial X-ray crystallographic characterization of recombinant bovine inositol polyphosphate 1-phosphatase produced in Spodoptera frugiperda cells.
York J.D., Chen Z.W., Ponder J.W., Chauhan A.K., Mathews F.S., Majerus P.W.
Bovine inositol polyphosphate 1-phosphatase, a monomeric protein with a molecular mass of 44,000 Da, hydrolyzes the 1-position phosphate from inositol 1,3,4-trisphosphate and inositol 1,4-bisphosphate. The low abundance of inositol polyphosphate 1-phosphatase in tissues has precluded structural st ... >> More
Bovine inositol polyphosphate 1-phosphatase, a monomeric protein with a molecular mass of 44,000 Da, hydrolyzes the 1-position phosphate from inositol 1,3,4-trisphosphate and inositol 1,4-bisphosphate. The low abundance of inositol polyphosphate 1-phosphatase in tissues has precluded structural studies requiring large quantities of enzyme. We used recombinant Baculovirus harboring the cDNA of bovine inositol polyphosphate 1-phosphatase to infect Spodoptera frugiperda (Sf9) insect cells. Recombinant protein (25 mg per 1 x 10(9) cells) was purified to homogeneity. The enzyme produced in Sf9 cells was similar to the native purified protein as determined by immunoblotting catalytic properties, and inhibition by lithium ions. Crystals of the purified recombinant enzyme were grown by vapor diffusion. Precession photography was used to determine the parameters of inositol polyphosphate 1-phosphatase crystals. The tetragonal crystals belong to the space group P4(1) or P4(3), have unit cell dimensions of a = b = 51.6 A, c = 143.3 A, alpha = beta = gamma = 90 degrees, and contain one molecule per asymmetric unit. We have collected a complete diffraction data set extending to 2.3 A and are currently attempting to solve the three-dimensional structure of bovine inositol polyphosphate 1-phosphatase using a multiple isomorphous replacement strategy. << Less
J. Mol. Biol. 236:584-589(1994) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Crystal structure of an enzyme displaying both inositol-polyphosphate-1-phosphatase and 3'-phosphoadenosine-5'-phosphate phosphatase activities: a novel target of lithium therapy.
Patel S., Yenush L., Rodriguez P.L., Serrano R., Blundell T.L.
Lithium cations exert profound and selective psychopharmacological effects on ameliorate manic-depressive psychosis. Although lithium is an effective drug for both treatment and prophylaxis of bipolar disorder, the precise mechanism of action is not well understood. Lithium acts as both an uncompe ... >> More
Lithium cations exert profound and selective psychopharmacological effects on ameliorate manic-depressive psychosis. Although lithium is an effective drug for both treatment and prophylaxis of bipolar disorder, the precise mechanism of action is not well understood. Lithium acts as both an uncompetitive and non-competitive inhibitor of several lithium-sensitive phosphatases with regard to substrate and magnesium cofactor, respectively. In this work, we report the crystal structure and reaction mechanism of Rattus norvegicus 3'-phosphoadenosine 5'-phosphate and inositol 1,4-bisphosphate phosphatase (RnPIP), a recently identified target of lithium therapy. This Li(+)-sensitive enzyme plays a crucial role in several cellular processes, such as RNA processing, sulphation reactions and probably inositol recycling. RnPIP specifically removes the 3'-phosphate group of 3'-phosphoadenosine 5'-phosphate (PAP) and the 1'-phosphate group of inositol 1,4-bisphosphate (I(1),(4)P(2)) producing AMP and inositol 4'-phosphate, respectively. The crystal structure of RnPIP complexed with AMP, Pi and magnesium ions at 1.69 A resolution provides insight into the reaction mechanism of the hydrolysis of PAP. The core fold of the enzyme is equivalent to that found in other Li(+)-sensitive phosphatases, such as inositol monophosphatase, but molecular modelling of I(1),(4)P(2) in the RnPIP active site reveals important structural determinants that accommodate this additional substrate. RnPIP is potently inhibited by lithium and, as the accumulation of PAP inhibits a variety of proteins, including sulphotransferases and RNA processing enzymes, this dual specificity enzyme represents a potential target of lithium action, in addition to inositol monophosphatases. << Less
-
Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides.
Berridge M.J., Dawson R.M., Downes C.P., Heslop J.P., Irvine R.F.
The formation of inositol phosphates in response to agonists was studied in brain slices, parotid gland fragments and in the insect salivary gland. The tissues were first incubated with [3H]inositol, which was incorporated into the phosphoinositides. All the tissues were found to contain glyceroph ... >> More
The formation of inositol phosphates in response to agonists was studied in brain slices, parotid gland fragments and in the insect salivary gland. The tissues were first incubated with [3H]inositol, which was incorporated into the phosphoinositides. All the tissues were found to contain glycerophosphoinositol, inositol 1-phosphate, inositol 1,4-bisphosphate and inositol 1,4,5-trisphosphate, which were identified by using anion-exchange and high-resolution anion-exchange chromatography, high-voltage paper ionophoresis and paper chromatography. There was no evidence for the existence of inositol 1:2-cyclic phosphate. A simple anion-exchange chromatographic method was developed for separating these inositol phosphates for quantitative analysis. Stimulation caused no change in the levels of glycerophosphoinositol in any of the tissues. The most prominent change concerned inositol 1,4-bisphosphate, which increased enormously in the insect salivary gland and parotid gland after stimulation with 5-hydroxytryptamine and carbachol respectively. Carbachol also induced a large increase in the level of inositol 1,4,5-trisphosphate in the parotid. Stimulation of brain slices with carbachol induced modest increase in the bis- and tris-phosphate. In all the tissues studied, there was a significant agonist-dependent increase in the level of inositol 1-phosphate. The latter may be derived from inositol 1,4-bisphosphate, because homogenates of the insect salivary gland contain a bisphosphatase in addition to a trisphosphatase. These results suggest that the earliest event in the stimulus-response pathway is the hydrolysis of polyphosphoinositides by a phosphodiesterase to yield inositol 1,4,5-trisphosphate and inositol 1,4-bisphosphate, which are subsequently hydrolysed to inositol 1-phosphate and inositol. The absence of inositol 1:2-cyclic phosphate could indicate that, at very short times after stimulation, phosphatidylinositol is not catabolized by its specific phosphodiesterase, or that any cyclic derivative liberated is rapidly hydrolysed by inositol 1:2-cyclic phosphate 2-phosphohydrolase. << Less
-
The metabolism of tris- and tetraphosphates of inositol by 5-phosphomonoesterase and 3-kinase enzymes.
Connolly T.M., Bansal V.S., Bross T.E., Irvine R.F., Majerus P.W.
Phospholipase C cleaves phosphatidylinositol 4,5-bisphosphate to form both inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) and inositol 1,2-cyclic 4,5-trisphosphate (cInsP3). The further metabolism of these inositol trisphosphates is determined by two enzymes: a 3-kinase and a 5-phosphomonoesterase. T ... >> More
Phospholipase C cleaves phosphatidylinositol 4,5-bisphosphate to form both inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) and inositol 1,2-cyclic 4,5-trisphosphate (cInsP3). The further metabolism of these inositol trisphosphates is determined by two enzymes: a 3-kinase and a 5-phosphomonoesterase. The first enzyme converts Ins(1,4,5)P3 to inositol 1,3,4,5-tetrakisphosphate (InsP4), while the latter forms inositol 1,4-bisphosphate and inositol 1,2-cyclic 4-bisphosphate from Ins(1,4,5)P3 and cInsP3, respectively. The current studies show that the 3-kinase is unable to phosphorylate cInsP3. Also, the 5-phosphomonoesterase hydrolyzes InsP4 with an apparent Km of 0.5-1.0 microM to form inositol 1,3,4-trisphosphate at a maximal velocity approximately 1/30 that for Ins(1,4,5)P3. The apparent affinity of the enzyme for the three substrates is InsP4 greater than Ins(1,4,5)P3 greater than cInsP3; however, the rate at which the phosphatase hydrolyzes these substrates is Ins(1,4,5)P3 greater than cInsP3 greater than InsP4. The 5-phosphomonoesterase and 3-kinase enzymes may control the levels of inositol trisphosphates in stimulated cells. The 3-kinase has a low apparent Km for Ins(1,4,5)P3 as does the 5-phosphomonoesterase for InsP4, implying that the formation and breakdown of InsP4 may proceed when both it and its precursor are present at low levels. Ins(1,4,5)P3 is utilized by both the 3-kinase and 5-phosphomonoesterase, while cInsP3 is utilized relatively poorly only by the 5-phosphomonoesterase. These findings imply that inositol cyclic trisphosphate may be metabolized slowly after its formation in stimulated cells. << Less