Enzymes
UniProtKB help_outline | 1,660 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline a long-chain fatty aldehyde Identifier CHEBI:17176 Charge 0 Formula CHOR SMILEShelp_outline [*]C=O 2D coordinates Mol file for the small molecule Search links Involved in 37 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADP+ Identifier CHEBI:58349 Charge -3 Formula C21H25N7O17P3 InChIKeyhelp_outline XJLXINKUBYWONI-NNYOXOHSSA-K SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,294 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,511 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a long-chain fatty acyl-CoA Identifier CHEBI:83139 Charge -4 Formula C22H31N7O17P3SR SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCSC([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 657 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADPH Identifier CHEBI:57783 (Beilstein: 10411862) help_outline Charge -4 Formula C21H26N7O17P3 InChIKeyhelp_outline ACFIXJIJDZMPPO-NNYOXOHSSA-J SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,288 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:15437 | RHEA:15438 | RHEA:15439 | RHEA:15440 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
Specific form(s) of this reaction
Publications
-
Aldehyde-forming fatty acyl-CoA reductase from cyanobacteria: expression, purification and characterization of the recombinant enzyme.
Lin F., Das D., Lin X.N., Marsh E.N.
Long-chain acyl-CoA reductases (ACRs) catalyze a key step in the biosynthesis of hydrocarbon waxes. As such they are attractive as components in engineered metabolic pathways for 'drop in' biofuels. Most ACR enzymes are integral membrane proteins, but a cytosolic ACR was recently discovered in cya ... >> More
Long-chain acyl-CoA reductases (ACRs) catalyze a key step in the biosynthesis of hydrocarbon waxes. As such they are attractive as components in engineered metabolic pathways for 'drop in' biofuels. Most ACR enzymes are integral membrane proteins, but a cytosolic ACR was recently discovered in cyanobacteria. The ACR from Synechococcus elongatus was overexpressed in Escherichia coli, purified and characterized. The enzyme was specific for NADPH and catalyzed the reduction of fatty acyl-CoA esters to the corresponding aldehydes, rather than alcohols. Stearoyl-CoA was the most effective substrate, being reduced more rapidly than either longer or shorter chain acyl-CoAs. ACR required divalent metal ions, e.g. Mg(2+), for activity and was stimulated ~ 10-fold by K(+). The enzyme was inactivated by iodoacetamide and was acylated on incubation with stearoyl-CoA, suggesting that reduction occurs through an enzyme-thioester intermediate. Consistent with this, steady state kinetic analysis indicates that the enzyme operates by a 'ping-pong' mechanism with kcat = 0.36 ± 0.023 min(-1), K(m)(stearoyl-CoA) = 31.9 ± 4.2 μM and K(m)(NADPH) = 35.6 ± 4.9 μM. The slow turnover number measured for ACR poses a challenge for its use in biofuel applications where highly efficient enzymes are needed. << Less