Enzymes
UniProtKB help_outline | 12 proteins |
Reaction participants Show >> << Hide
- Name help_outline α-D-mannose 1-phosphate Identifier CHEBI:58409 (Beilstein: 3911528) help_outline Charge -2 Formula C6H11O9P InChIKeyhelp_outline HXXFSFRBOHSIMQ-RWOPYEJCSA-L SMILEShelp_outline OC[C@H]1O[C@H](OP([O-])([O-])=O)[C@@H](O)[C@@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 12 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline GTP Identifier CHEBI:37565 (Beilstein: 5211792) help_outline Charge -4 Formula C10H12N5O14P3 InChIKeyhelp_outline XKMLYUALXHKNFT-UUOKFMHZSA-J SMILEShelp_outline Nc1nc2n(cnc2c(=O)[nH]1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 94 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline diphosphate Identifier CHEBI:33019 (Beilstein: 185088) help_outline Charge -3 Formula HO7P2 InChIKeyhelp_outline XPPKVPWEQAFLFU-UHFFFAOYSA-K SMILEShelp_outline OP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,129 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline GDP-α-D-mannose Identifier CHEBI:57527 (Beilstein: 6630718) help_outline Charge -2 Formula C16H23N5O16P2 InChIKeyhelp_outline MVMSCBBUIHUTGJ-GDJBGNAASA-L SMILEShelp_outline Nc1nc2n(cnc2c(=O)[nH]1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)O[C@H]2O[C@H](CO)[C@@H](O)[C@H](O)[C@@H]2O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 54 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:15229 | RHEA:15230 | RHEA:15231 | RHEA:15232 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline | ||||
Reactome help_outline |
Publications
-
GDP-mannose pyrophosphorylase is a genetic determinant of ammonium sensitivity in Arabidopsis thaliana.
Qin C., Qian W., Wang W., Wu Y., Yu C., Jiang X., Wang D., Wu P.
Higher plant species differ widely in their growth responses to ammonium (NH(4)(+)). However, the molecular genetic mechanisms underlying NH(4)(+) sensitivity in plants remain unknown. Here, we report that mutations in the Arabidopsis gene encoding GDP-mannose pyrophosphorylase (GMPase) essential ... >> More
Higher plant species differ widely in their growth responses to ammonium (NH(4)(+)). However, the molecular genetic mechanisms underlying NH(4)(+) sensitivity in plants remain unknown. Here, we report that mutations in the Arabidopsis gene encoding GDP-mannose pyrophosphorylase (GMPase) essential for synthesizing GDP-mannose confer hypersensitivity to NH(4)(+). The in planta activities of WT and mutant GMPases all were inhibited by NH(4)(+), but the magnitude of the inhibition was significantly larger in the mutant. Despite the involvement of GDP-mannose in both l-ascorbic acid (AsA) and N-glycoprotein biosynthesis, defective protein glycosylation in the roots, rather than decreased AsA content, was linked to the hypersensitivity of GMPase mutants to NH(4)(+). We conclude that NH(4)(+) inhibits GMPase activity and that the level of GMPase activity regulates Arabidopsis sensitivity to NH(4)(+). Further analysis showed that defective N-glycosylation of proteins, unfolded protein response, and cell death in the roots are likely important downstream molecular events involved in the growth inhibition of Arabidopsis by NH(4)(+). << Less
Proc. Natl. Acad. Sci. U.S.A. 105:18308-18313(2008) [PubMed] [EuropePMC]
-
SUGAR NUCLEOTIDE REACTIONS IN ARTHROBACTER. I. GUANOSINE DIPHOSPHATE MANNOSE PYROPHOSPHORYLASE: PURIFICATION AND PROPERTIES.
PREISS J., WOOD E.