Enzymes
UniProtKB help_outline | 7 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline D-mannitol Identifier CHEBI:16899 (Beilstein: 1721898; CAS: 69-65-8) help_outline Charge 0 Formula C6H14O6 InChIKeyhelp_outline FBPFZTCFMRRESA-KVTDHHQDSA-N SMILEShelp_outline OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO 2D coordinates Mol file for the small molecule Search links Involved in 7 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,186 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline D-mannose Identifier CHEBI:4208 (Beilstein: 1423215; CAS: 31103-86-3,530-26-7,3458-28-4) help_outline Charge 0 Formula C6H12O6 InChIKeyhelp_outline WQZGKKKJIJFFOK-QTVWNMPRSA-N SMILEShelp_outline OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 31 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,116 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:15029 | RHEA:15030 | RHEA:15031 | RHEA:15032 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Sequence analysis of a mannitol dehydrogenase cDNA from plants reveals a function for the pathogenesis-related protein ELI3.
Williamson J.D., Stoop J.M.H., Massel M.O., Conkling M.A., Pharr D.M.
Mannitol is the most abundant sugar alcohol in nature, occurring in bacteria, fungi, lichens, and many species of vascular plants. Celery (Apium graveolens L.), a plant that forms mannitol photosynthetically, has high photosynthetic rates thought to results from intrinsic differences in the biosyn ... >> More
Mannitol is the most abundant sugar alcohol in nature, occurring in bacteria, fungi, lichens, and many species of vascular plants. Celery (Apium graveolens L.), a plant that forms mannitol photosynthetically, has high photosynthetic rates thought to results from intrinsic differences in the biosynthesis of hexitols vs. sugars. Celery also exhibits high salt tolerance due to the function of mannitol as an osmoprotectant. A mannitol catabolic enzyme that oxidizes mannitol to mannose (mannitol dehydrogenase, MTD) has been identified. In celery plants, MTD activity and tissue mannitol concentration are inversely related. MTD provides the initial step by which translocated mannitol is committed to central metabolism and, by regulating mannitol pool size, is important in regulating salt tolerance at the cellular level. We have now isolated, sequenced, and characterized a Mtd cDNA from celery. Analyses showed that Mtd RNA was more abundant in cells grown on mannitol and less abundant in salt-stressed cells. A protein database search revealed that the previously described ELI3 pathogenesis-related proteins from parsley and Arabidopsis are MTDs. Treatment of celery cells with salicylic acid resulted in increased MTD activity and RNA. Increased MTD activity results in an increased ability to utilize mannitol. Among other effects, this may provide an additional source of carbon and energy for response to pathogen attack. These responses of the primary enzyme controlling mannitol pool size reflect the importance of mannitol metabolism in plant responses to divergent types of environmental stress. << Less
Proc. Natl. Acad. Sci. U.S.A. 92:7148-7152(1995) [PubMed] [EuropePMC]
-
Partial purification and characterization of mannitol: mannose 1-oxidoreductase from celeriac (Apium graveolens var. rapaceum) roots.
Stoop J.M., Pharr D.M.
A mannitol:mannose 1-oxidoreductase was isolated from celeriac (Apium graveolens var. rapaceum) root tips by fractionation with (NH4)2SO4, followed by chromatography on a Fractogel DEAE column and then concentration with (NH4)2SO4. This newly discovered mannitol dehydrogenase catalyzes the NAD-dep ... >> More
A mannitol:mannose 1-oxidoreductase was isolated from celeriac (Apium graveolens var. rapaceum) root tips by fractionation with (NH4)2SO4, followed by chromatography on a Fractogel DEAE column and then concentration with (NH4)2SO4. This newly discovered mannitol dehydrogenase catalyzes the NAD-dependent oxidation of mannitol to mannose, not mannitol to fructose. The sugar product of the enzyme reaction was identified by three independent HPLC systems and by an enzymatically linked system as being mannose and not fructose or glucose. Normal Michaelis--Menten kinetics were exhibited for both mannitol and NAD with Km values of 72 and 0.26 mM, respectively, at pH 9.0. The Vmax was 40.14 mumol/h/mg protein for mannitol synthesis and 0.8 mumol/h/mg protein for mannose synthesis at pH 9.0. In the polyol oxidizing reaction, the enzyme was very specific for mannitol with a low rate of oxidation of sorbitol. In the reverse reaction, the enzyme was specific for mannose. The enzyme was strongly inhibited by NADH and sensitive to alterations of NAD/NADH ratio. The enzyme is of physiological importance in that it is mainly localized in root tips (sink tissue) where it functions to convert mannitol into hexoses which are utilized to support root growth. Product determination and kinetic characterization were carried out on an enzyme preparation with a specific activity (SA) of 30.44 mumol/h/mg protein. Subsequently, the enzyme was further purified to a SA of 201 mumol/h/mg protein using an NAD affinity column. This paper apparently represents the first evidence of the existence of a mannitol:mannose 1-oxidoreductase and also the first evidence of the presence of a mannitol dehydrogenase in vascular plants. << Less
-
Purification of NAD-dependent mannitol dehydrogenase from celery suspension cultures.
Stoop J.M., Williamson J.D., Conkling M.A., Pharr D.M.
Mannitol dehydrogenase, a mannitol:mannose 1-oxidoreductase, constitutes the first enzymatic step in the catabolism of mannitol in nonphotosynthetic tissues of celery (Apium graveolens L.). Endogenous regulation on the enzyme activity in response to environmental cues is critical in modulating tis ... >> More
Mannitol dehydrogenase, a mannitol:mannose 1-oxidoreductase, constitutes the first enzymatic step in the catabolism of mannitol in nonphotosynthetic tissues of celery (Apium graveolens L.). Endogenous regulation on the enzyme activity in response to environmental cues is critical in modulating tissue concentration of mannitol, which, importantly, contribute to stress tolerance of celery. The enzyme was purified to homogeneity from celery suspension cultures grown on D-mannitol as the carbon source. Mannitol dehydrogenase was purified 589-fold to a specific activity of 365 mumol h-1 mg-1 protein with a 37% yield of enzyme activity present in the crude extract. A highly efficient and simple purification protocol was developed involving polyethylene glycol fractionation, diethylaminoethyl-anion-exchange chromatography, and NAD-agarose affinity chromatography using NAD gradient elution. Sodium dodecylsulfate gel electrophoresis of the final preparation revealed a single 40-kD protein. The molecular mass of the native protein was determined to be approximately 43 kD, indicating that the enzyme is a monomer. Polyclonal antibodies raised against the enzyme inhibited enzymatic activity of purified mannitol dehydrogenase. Immunoblots of crude protein extracts from mannitol-grown celery cells and sink tissues of celery, celeriac, and parsley subjected to sodium dodecyl sulfate gel electrophoresis showed a single major immuno-reactive 40-kD protein. << Less