Enzymes
UniProtKB help_outline | 691 proteins |
Reaction participants Show >> << Hide
- Name help_outline a phosphate monoester Identifier CHEBI:67140 Charge -2 Formula O4PR SMILEShelp_outline [O-]P([O-])(=O)O[*] 2D coordinates Mol file for the small molecule Search links Involved in 29 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline an alcohol Identifier CHEBI:30879 Charge 0 Formula HOR SMILEShelp_outline O[*] 2D coordinates Mol file for the small molecule Search links Involved in 1,541 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 992 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:15017 | RHEA:15018 | RHEA:15019 | RHEA:15020 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline | ||||
Reactome help_outline |
Related reactions help_outline
Specific form(s) of this reaction
Publications
-
Isolation of a cDNA encoding human lysophosphatidic acid phosphatase that is involved in the regulation of mitochondrial lipid biosynthesis.
Hiroyama M., Takenawa T.
In this study, we isolated cDNA encoding lysophosphatidic acid (LPA) phosphatase (LPAP). The amino acid sequence deduced from the cDNA encoding LPAP had 421 residues including a putative signal peptide and was homologous to acid phosphatase, especially at the active site. Human LPAP had 28.5% amin ... >> More
In this study, we isolated cDNA encoding lysophosphatidic acid (LPA) phosphatase (LPAP). The amino acid sequence deduced from the cDNA encoding LPAP had 421 residues including a putative signal peptide and was homologous to acid phosphatase, especially at the active site. Human LPAP had 28.5% amino acid identity to human prostatic acid phosphatase. Northern blot analysis showed a ubiquitous expression of LPAP, which was marked in kidney, heart, small intestine, muscle, and liver. Human chromosome map obtained by fluorescence in situ hybridazation showed that the gene for LPAP was localized to chromosome 1 q21. The mutant in which histidine was replaced with alanine at the active site and the putative signal peptide-deleted LPAP had no LPA phosphatase activity. In addition, the putative signal peptide-deleted LPAP showed no mitochondrial localization. The site of intracellular localization of endogenous LPAP was also mitochondria in MDCK cells and differentiated C2C12 cells. The LPAP homologous phosphatase, human prostatic acid phosphatase, also has LPA phosphatase activity. LPAP-stable transfected NIH 3T3 cells showed less phosphatidic acid, phosphatidylglycerol, and cardiolipin. These results suggested that LPAP regulates lipid metabolism in mitochondria via the hydrolysis of LPA to monoacylglycerol. << Less
J. Biol. Chem. 274:29172-29180(1999) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
PURIFICATION AND CRYSTALLIZATION OF THE ALKALINE PHOSPHATASE OF ESCHERICHIA COLI.
MALAMY M.H., HORECKER B.L.
-
Crystal structure of rat intestinal alkaline phosphatase - Role of crown domain in mammalian alkaline phosphatases.
Ghosh K., Mazumder Tagore D., Anumula R., Lakshmaiah B., Kumar P.P., Singaram S., Matan T., Kallipatti S., Selvam S., Krishnamurthy P., Ramarao M.
Intestinal alkaline phosphatases (IAPs) are involved in the cleavage of phosphate prodrugs to liberate the drug for absorption in the intestine. To facilitate in vitro characterization of phosphate prodrugs, we have cloned, expressed, purified and characterized IAPs from rat and cynomolgus monkey ... >> More
Intestinal alkaline phosphatases (IAPs) are involved in the cleavage of phosphate prodrugs to liberate the drug for absorption in the intestine. To facilitate in vitro characterization of phosphate prodrugs, we have cloned, expressed, purified and characterized IAPs from rat and cynomolgus monkey (rIAP and cIAP respectively) which are important pre-clinical species for drug metabolism studies. The recombinant rat and monkey enzymes expressed in Sf9 insect cells (IAP-Ic) were found to be glycosylated and active. Expression of rat IAP in Escherichia coli (rIAP-Ec) led to ~200-fold loss of activity that was partially recovered by the addition of external Zn(2+) and Mg(2+) ions. Crystal structures of rIAP-Ec and rIAP-Ic were determined and they provide rationale for the discrepancy in enzyme activities. Rat IAP-Ic retains its activity in presence of both Zn(2+) and Mg(2+) whereas activity of most other alkaline phosphatases (APs) including the cIAP was strongly inhibited by excess Zn(2+). Based on our crystal structure, we hypothesized the residue Q317 in rIAP, present within 7 Å of the Mg(2+) at M3, to be important for this difference in activity. The Q317H rIAP and H317Q cIAP mutants showed reversal in effect of Zn(2+), corroborating the hypothesis. Further analysis of the two structures indicated a close linkage between glycosylation and crown domain stability. A triple mutant of rIAP, where all the three putative N-linked glycosylation sites were mutated showed thermal instability and reduced activity. << Less
-
Reciprocal regulation of the tandemly duplicated PHO5/PHO3 gene cluster within the acid phosphatase multigene family of Saccharomyces cerevisiae.
Tait-Kamradt A.G., Turner K.J., Kramer R.A., Elliott Q.D., Bostian S.J., Thill G.P., Rogers D.T., Bostian K.A.
We characterized the organization and expression of PHO5 and PHO3, the tightly linked repressible and constitutive acid phosphatase genes of Saccharomyces cerevisiae. The "constitutive" gene, PHO3, is expressed only when PHO5 is not. Altering PHO5 expression, either through promoter deletions or t ... >> More
We characterized the organization and expression of PHO5 and PHO3, the tightly linked repressible and constitutive acid phosphatase genes of Saccharomyces cerevisiae. The "constitutive" gene, PHO3, is expressed only when PHO5 is not. Altering PHO5 expression, either through promoter deletions or through mutations in trans-acting regulatory genes, showed that PHO5 expression is sufficient to block transcription of PHO3. An active genomic copy of PHO5 was able to block expression of PHO3 from a high-copy-number plasmid, showing that some trans-acting product of PHO5 is involved. This is probably a translation product, since the presence of a nontranslatable PHO5 RNA did not inhibit transcription of PHO3. << Less
-
The nucleotide sequence of the yeast PHO5 gene: a putative precursor of repressible acid phosphatase contains a signal peptide.
Arima K., Oshima T., Kubota I., Nakamura N., Mizunaga T., Toh-e A.
The nucleotide sequence of the PHO5 gene of the yeast, Saccharomyces cerevisiae, which encodes repressible acid phosphatase (APase) was determined. Comparison of N-terminal amino acid sequence deduced from the nucleotide sequence with that of the purified repressible APase revealed the existence o ... >> More
The nucleotide sequence of the PHO5 gene of the yeast, Saccharomyces cerevisiae, which encodes repressible acid phosphatase (APase) was determined. Comparison of N-terminal amino acid sequence deduced from the nucleotide sequence with that of the purified repressible APase revealed the existence of a putative signal peptide in the precursor protein. The signal peptide was shown to contain 17 amino acid residues and its structural features were quite similar to those of higher eukaryotic and prokaryotic signal peptides. The nucleotide sequence of 5' and 3' noncoding flanking regions of the PHO5 gene are also discussed. << Less
-
Prostatic acid phosphatase degrades lysophosphatidic acid in seminal plasma.
Tanaka M., Kishi Y., Takanezawa Y., Kakehi Y., Aoki J., Arai H.
Lysophosphatidic acid (LPA) is a lipid mediator with multiple biological activities and is detected in various biological fluids, including human seminal plasma. Due to its cell proliferation stimulatory and anti-apoptotic activities, LPA has been implicated in the progression of some cancers such ... >> More
Lysophosphatidic acid (LPA) is a lipid mediator with multiple biological activities and is detected in various biological fluids, including human seminal plasma. Due to its cell proliferation stimulatory and anti-apoptotic activities, LPA has been implicated in the progression of some cancers such as ovarian cancer and prostate cancer. Here, we show that prostatic acid phosphatase, which is a non-specific phosphatase and which has been implicated in the progression of prostate cancer, inactivates LPA in human seminal plasma. Human seminal plasma contains both an LPA-synthetic enzyme, lysoPLD, which converts lysophospholipids to LPA and is responsible for LPA production in serum, and its major substrate, lysophosphatidylcholine. In serum, LPA accumulated during incubation at 37 degrees C. However, in seminal plasma, LPA did not accumulate. This discrepancy is explained by the presence of a strong LPA-degrading activity. Incubation of LPA with seminal plasma resulted in the disappearance of LPA and an accompanying accumulation of monoglyceride showing that LPA is degraded by phosphatase activity present in the seminal plasma. When seminal plasma was incubated in the presence of a phosphatase inhibitor, sodium orthovanadate, LPA accumulated, indicating that LPA is produced and degraded in the fluid. Biochemical characterization of the LPA-phosphatase activity identified two phosphatase activities in human seminal plasma. By Western blotting analysis in combination with several column chromatographies, the major activity was revealed to be identical to prostatic acid phosphatase. The present study demonstrates active LPA metabolism in seminal plasma and indicates the possible role of LPA signaling in male sexual organs including prostate cancer. << Less
FEBS Lett. 571:197-204(2004) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Studies on calf-intestinal alkaline phosphatase. I. Chromatographic purification, microheterogeneity and some other properties of the purified enzyme.
ENGSTROM L.
-
Molecular cloning and expression of a cDNA encoding the membrane-associated rat intestinal alkaline phosphatase.
Lowe M., Strauss A.W., Alpers R., Seetharam S., Alpers D.H.
Rat intestinal alkaline phosphatase (IAP) has been purified and proteolytic fragments sequenced. A cDNA library was constructed from duodenal poly(A) + RNA and screened for IAP positive clones by a full-length cDNA clone-encoding human IAP. A full length rat IAP clone (2237 bp) was isolated and se ... >> More
Rat intestinal alkaline phosphatase (IAP) has been purified and proteolytic fragments sequenced. A cDNA library was constructed from duodenal poly(A) + RNA and screened for IAP positive clones by a full-length cDNA clone-encoding human IAP. A full length rat IAP clone (2237 bp) was isolated and sequenced, revealing a predicted primary sequence of 519 amino acids (61.974 kDa) with an additional signal peptide of 20 amino acids. 80% of amino acids from residues 1-474 were identical when compared with the human IAP, but there was only 31% identity in the COOH-terminal 45 amino acids. The homology diverges just before the putative binding site for the phosphatidylinositol-glycan (PI-glycan) anchor. The resulting peptide in rat AP contains five hydrophilic amino acids not present in the primary structure of human IAP. Binding of a synthetic 48-mer encoding a portion of this unique and divergent region (residues 476-491) was compared with that of the full-length clone on Northern blots of rat intestinal RNA. Two mRNAs, 3.0 and 2.7 kb, were detected by both probes, confirming earlier results, but the 48-mer bound preferentially to the 3.0 kb mRNA. The protein product of the full-length cDNA in a cell-free system was 62 kDa, corresponding with the smaller of the two IAP proteins produced by rat duodenal RNA. The cDNA transfected into COS-1 cells produced a membrane-bound IAP that was released by phosphatidylinositol-specific phospholipase (PI-PLC). These data provide definitive evidence that IAP is anchored by PI-glycan and conclusively demonstrate that the unique COOH-terminal structure encoded by this rat mRNA supports the addition of a PI-glycan anchor. << Less
Biochim. Biophys. Acta 1037:170-177(1990) [PubMed] [EuropePMC]
-
A soluble form of phosphatase in Saccharomyces cerevisiae capable of converting farnesyl diphosphate into E,E-farnesol.
Song L.
After anion-exchange chromatography, the soluble fraction of a cell-free extract of Saccharomyces cerevisiae showed two phosphatase activity peaks when p-nitrophenyl phosphate (pNPP) was used as the substrate. However, only the second pNPP active peak demonstrated the ability to convert farnesyl d ... >> More
After anion-exchange chromatography, the soluble fraction of a cell-free extract of Saccharomyces cerevisiae showed two phosphatase activity peaks when p-nitrophenyl phosphate (pNPP) was used as the substrate. However, only the second pNPP active peak demonstrated the ability to convert farnesyl diphosphate (FPP) into E,E-farnesol. N-terminal sequence analysis of the purified pNPP/FPP phosphatase revealed that it was a truncated form of alkaline phosphatase Pho8 lacking 62 amino acids from the N-terminus and was designated Pho8Delta62. Although other isoprenyl diphosphates such as geranyl diphosphate (GPP) and geranylgeranyl diphosphate (GGPP) could also be hydrolyzed by Pho8Delta62 to the corresponding alcohols, selectivity was observed among these substrates. The optimum pH was 7.0 for all three isoprenyl diphosphate substrates. Although lower hydrolytic activity was observed for FPP and GGPP at pH 6.0 and 8.5, hydrolysis of GPP was observed only at pH 7.0. Mg2+ and Mn2+ inhibited hydrolysis of FPP and GGPP, and GGPP was more sensitive to Mg2+ inhibition than FPP. The rate of FPP hydrolysis increased in the presence of Triton X-100. << Less
Appl. Biochem. Biotechnol. 128:149-158(2006) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Studies on human placental alkaline phosphatase. II. Kinetic properties and studies on the apoenzyme.
Harkness D.R.
-
Crystal structures and biochemical studies of human lysophosphatidic acid phosphatase type 6.
Li J., Dong Y., Lu X., Wang L., Peng W., Zhang X.C., Rao Z.
Lysophosphatidic acid (LPA) is an important bioactive phospholipid involved in cell signaling through Gprotein-coupled receptors pathways. It is also involved in balancing the lipid composition inside the cell, and modulates the function of lipid rafts as an intermediate in phospholipid metabolism ... >> More
Lysophosphatidic acid (LPA) is an important bioactive phospholipid involved in cell signaling through Gprotein-coupled receptors pathways. It is also involved in balancing the lipid composition inside the cell, and modulates the function of lipid rafts as an intermediate in phospholipid metabolism. Because of its involvement in these important processes, LPA degradation needs to be regulated as precisely as its production. Lysophosphatidic acid phosphatase type 6 (ACP6) is an LPA-specific acid phosphatase that hydrolyzes LPA to monoacylglycerol (MAG) and phosphate. Here, we report three crystal structures of human ACP6 in complex with malonate, L-(+)-tartrate and tris, respectively. Our analyses revealed that ACP6 possesses a highly conserved Rossmann-foldlike body domain as well as a less conserved cap domain. The vast hydrophobic substrate-binding pocket, which is located between those two domains, is suitable for accommodating LPA, and its shape is different from that of other histidine acid phosphatases, a fact that is consistent with the observed difference in substrate preferences. Our analysis of the binding of three molecules in the active site reveals the involvement of six conserved and crucial residues in binding of the LPA phosphate group and its catalysis. The structure also indicates a water-supplying channel for substrate hydrolysis. Our structural data are consistent with the fact that the enzyme is active as a monomer. In combination with additional mutagenesis and enzyme activity studies, our structural data provide important insights into substrate recognition and the mechanism for catalytic activity of ACP6. << Less