Enzymes
UniProtKB help_outline | 3 proteins |
Reaction participants Show >> << Hide
- Name help_outline a 1,2-diacyl-sn-glycerol Identifier CHEBI:17815 Charge 0 Formula C5H6O5R2 SMILEShelp_outline OC[C@@H](COC([*])=O)OC([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 197 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP-α-D-galactose Identifier CHEBI:66914 Charge -2 Formula C15H22N2O17P2 InChIKeyhelp_outline HSCJRCZFDFQWRP-ABVWGUQPSA-L SMILEShelp_outline OC[C@H]1O[C@H](OP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2ccc(=O)[nH]c2=O)[C@H](O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 105 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a 1,2-diacyl-3-O-(β-D-galactosyl)-sn-glycerol Identifier CHEBI:17615 Charge 0 Formula C11H16O10R2 SMILEShelp_outline OC[C@H]1O[C@@H](OC[C@@H](COC([*])=O)OC([*])=O)[C@H](O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 26 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP Identifier CHEBI:58223 Charge -3 Formula C9H11N2O12P2 InChIKeyhelp_outline XCCTYIAWTASOJW-XVFCMESISA-K SMILEShelp_outline O[C@@H]1[C@@H](COP([O-])(=O)OP([O-])([O-])=O)O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1=O 2D coordinates Mol file for the small molecule Search links Involved in 576 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:14945 | RHEA:14946 | RHEA:14947 | RHEA:14948 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
Specific form(s) of this reaction
Publications
-
A processive lipid glycosyltransferase in the small human pathogen Mycoplasma pneumoniae: involvement in host immune response.
Klement M.L., Ojemyr L., Tagscherer K.E., Widmalm G., Wieslander A.
The human pathogen Mycoplasma pneumoniae has a very small genome but with many yet not identified gene functions, e.g. for membrane lipid biosynthesis. Extensive radioactive labelling in vivo and enzyme assays in vitro revealed a substantial capacity for membrane glycolipid biosynthesis, yielding ... >> More
The human pathogen Mycoplasma pneumoniae has a very small genome but with many yet not identified gene functions, e.g. for membrane lipid biosynthesis. Extensive radioactive labelling in vivo and enzyme assays in vitro revealed a substantial capacity for membrane glycolipid biosynthesis, yielding three glycolipids, five phosphoglycolipids, in addition to six phospholipids. Most glycolipids were synthesized in a cell protein/lipid-detergent extract in vitro; galactose was incorporated into all species, whereas glucose only into a few. One (MPN483) of the three predicted glycosyltransferases (GTs; all essential) was both processive and promiscuous, synthesizing most of the identified glycolipids. These enzymes are of a GT-A fold, similar to an established structure, and belong to CAZy GT-family 2. The cloned MPN483 could use both diacylglycerol (DAG) and human ceramide acceptor substrates, and in particular UDP-galactose but also UDP-glucose as donors, making mono-, di- and trihexose variants. MPN483 output and processitivity was strongly influenced by the local lipid environment of anionic lipids. The structure of a major beta1,6GlcbetaGalDAG species was determined by NMR spectroscopy. This, as well as other purified M. pneumoniae glycolipid species, is important antigens in early infections, as revealed from ELISA screens with patient IgM sera, highlighting new aspects of glycolipid function. << Less
Mol. Microbiol. 65:1444-1457(2007) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Three enzyme systems for galactoglycerolipid biosynthesis are coordinately regulated in plants.
Benning C., Ohta H.
Galactoglycerolipids, in which galactose is bound at the glycerol sn-3 position in O-glycosidic linkage to diacylglycerol, are abundant in plants and photosynthetic bacteria, where they constitute the bulk of the polar lipids of the photosynthetic membranes. Galactoglycerolipid biosynthesis in pla ... >> More
Galactoglycerolipids, in which galactose is bound at the glycerol sn-3 position in O-glycosidic linkage to diacylglycerol, are abundant in plants and photosynthetic bacteria, where they constitute the bulk of the polar lipids of the photosynthetic membranes. Galactoglycerolipid biosynthesis in plants is highly compartmentalized involving enzymes at the endoplasmic reticulum and the two chloroplast envelopes. This peculiar organization requires extensive trafficking of lipid precursors. It is now increasingly apparent that there are three different sets of lipid galactosyltransferases capable of galactoglycerolipid biosynthesis in the model plant Arabidopsis. Two enzymes, MGD1 and DGD1, provide the bulk of galactoglycerolipids in the chloroplast and in photosynthetic tissues in general. Under phosphate-limited growth conditions and in non-photosynthetic tissues MGD2/3 and DGD2 are highly active. Moreover, galactoglycerolipids produced by this second pathway are often found in extraplastidic membranes. Although these galactosyltransferases use UDP-Gal as the galactose donor, a third pathway involves a processive enzyme, which transfers galactose from one galactolipid to another. << Less
J. Biol. Chem. 280:2397-2400(2005) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Biochemical and topological properties of type A MGDG synthase, a spinach chloroplast envelope enzyme catalyzing the synthesis of both prokaryotic and eukaryotic MGDG.
Miege C., Marechal E., Shimojima M., Awai K., Block M.A., Ohta H., Takamiya K., Douce R., Joyard J.
MGDG synthase, the enzyme that catalyzes the synthesis of the major chloroplast membrane lipid monogalactosyldiacylglycerol (MGDG), is encoded by a multigenic family. We have analyzed the biochemical properties, subcellular localization and membrane topology of a spinach chloroplast MGDG synthase, ... >> More
MGDG synthase, the enzyme that catalyzes the synthesis of the major chloroplast membrane lipid monogalactosyldiacylglycerol (MGDG), is encoded by a multigenic family. We have analyzed the biochemical properties, subcellular localization and membrane topology of a spinach chloroplast MGDG synthase, a representative member of the type A family from Spinacia oleracea (soMGD A), using a recombinant protein that was functionally overexpressed in Escherichia coli and specific polyclonal antibodies. We demonstrated that soMGD A could catalyze the synthesis of both 'prokaryotic' and 'eukaryotic' MGDG molecular species in vitro, with a selectivity for diacylglycerol similar to that of purified chloroplast envelope MGDG synthase activity. Furthermore, soMGD A was shown to be sensitive to chemical reagents (dithiothreitol, N-ethylmaleimide and o-phenanthroline) known to affect MGDG synthesis by the partially purified enzyme, as well as in isolated chloroplast envelope membranes. In spinach chloroplasts, soMGD A was localized by Western blot analysis in the inner envelope membrane. Topological studies demonstrated that soMGD A is a monotopic enzyme, embedded within one leaflet of the inner envelope membrane from spinach chloroplasts, a structure which may involve amphipathic alpha helices. We further demonstrated that in vitro, soMGD A precursor is imported and processed to its correct mature form in intact chloroplasts. These results show that soMGD A corresponds to a mature polypeptide of approximately 45 kDa. In addition, inactivation kinetics after gamma-ray irradiation strongly suggest that both native chloroplast envelope MGDG synthase and recombinant soMGD A have a functional molecular mass of 95-100 kDa, indicating that they are probably active as homodimers made of two 45-kDa subunits. This study suggests that, in spite of the growing evidence that MGDG synthesis is catalyzed by a multigenic family of enzymes, in spinach leaves both prokaryotic and eukaryotic MGDG syntheses could be attributable to a unique dimeric enzyme, provided that diacylglycerol is transported from the outer membrane to the inner membrane of the chloroplast envelope. << Less
-
The metabolism of glyceride glycolipids. II. Biosynthesis of monogalactosyl diglyceride from uridine diphosphate galactose and diglyceride in brain.
Wenger D.A., Petitpas J.W., Pieringer R.A.
-
Biochemical changes in Bifidobacterium bifidum var. pennsylvanicus after cell-wall inhibition. VI. Biosynthesis of the galactosyldiglycerides.
Veerkamp J.H.
-
Expression and characterization of a Mycoplasma genitalium glycosyltransferase in membrane glycolipid biosynthesis: potential target against mycoplasma infections.
Andres E., Martinez N., Planas A.
Mycoplasmas contain glycoglycerolipids in their plasma membrane as key structural components involved in bilayer properties and stability. A membrane-associated glycosyltransferase (GT), GT MG517, has been identified in Mycoplasma genitalium, which sequentially produces monoglycosyl- and diglycosy ... >> More
Mycoplasmas contain glycoglycerolipids in their plasma membrane as key structural components involved in bilayer properties and stability. A membrane-associated glycosyltransferase (GT), GT MG517, has been identified in Mycoplasma genitalium, which sequentially produces monoglycosyl- and diglycosyldiacylglycerols. When recombinantly expressed in Escherichia coli, the enzyme was functional in vivo and yielded membrane glycolipids from which Glcβ1,6GlcβDAG was identified as the main product. A chaperone co-expression system and extraction with CHAPS detergent afforded soluble protein that was purified by affinity chromatography. GT MG517 transfers glucosyl and galactosyl residues from UDP-Glc and UDP-Gal to dioleoylglycerol (DOG) acceptor to form the corresponding β-glycosyl-DOG, which then acts as acceptor to give β-diglycosyl-DOG products. The enzyme (GT2 family) follows Michaelis-Menten kinetics. k(cat) is about 5-fold higher for UDP-Gal with either DOG or monoglucosyldioleoylglycerol acceptors, but it shows better binding for UDP-Glc than UDP-Gal, as reflected by the lower K(m), which results in similar k(cat)/K(m) values for both donors. Although sequentially adding glycosyl residues with β-1,6 connectivity, the first glycosyltransferase activity (to DOG) is about 1 order of magnitude higher than the second (to monoglucosyldioleoylglycerol). Because the ratio between the non-bilayer-forming monoglycosyldiacylglycerols and the bilayer-prone diglycosyldiacylglycerols contributes to regulate the properties of the plasma membrane, both synthase activities are probably regulated. Dioleoylphosphatidylglycerol (anionic phospholipid) activates the enzyme, k(cat) linearly increasing with dioleoylphosphatidylglycerol concentration. GT MG517 is shown to be encoded by an essential gene, and the addition of GT inhibitors results in cell growth inhibition. It is proposed that glycolipid synthases are potential targets for drug discovery against infections by mycoplasmas. << Less
J. Biol. Chem. 286:35367-35379(2011) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.