Reaction participants Show >> << Hide
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,186 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline testosterone Identifier CHEBI:17347 (Beilstein: 1915399,3653705; CAS: 58-22-0) help_outline Charge 0 Formula C19H28O2 InChIKeyhelp_outline MUMGGOZAMZWBJJ-DYKIIFRCSA-N SMILEShelp_outline [H][C@@]12CCC3=CC(=O)CC[C@]3(C)[C@@]1([H])CC[C@]1(C)[C@@H](O)CC[C@@]21[H] 2D coordinates Mol file for the small molecule Search links Involved in 18 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline androst-4-ene-3,17-dione Identifier CHEBI:16422 (Beilstein: 2059239; CAS: 63-05-8) help_outline Charge 0 Formula C19H26O2 InChIKeyhelp_outline AEMFNILZOJDQLW-QAGGRKNESA-N SMILEShelp_outline [H][C@@]12CCC3=CC(=O)CC[C@]3(C)[C@@]1([H])CC[C@]1(C)C(=O)CC[C@@]21[H] 2D coordinates Mol file for the small molecule Search links Involved in 19 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,116 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:14929 | RHEA:14930 | RHEA:14931 | RHEA:14932 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Expanded substrate screenings of human and Drosophila type 10 17beta-hydroxysteroid dehydrogenases (HSDs) reveal multiple specificities in bile acid and steroid hormone metabolism: characterization of multifunctional 3alpha/7alpha/7beta/17beta/20beta/21-HSD.
Shafqat N., Marschall H.U., Filling C., Nordling E., Wu X.Q., Bjork L., Thyberg J., Martensson E., Salim S., Jornvall H., Oppermann U.
17beta-hydroxysteroid dehydrogenases (17beta-HSDs) catalyse the conversion of 17beta-OH (-hydroxy)/17-oxo groups of steroids, and are essential in mammalian hormone physiology. At present, eleven 17beta-HSD isoforms have been defined in mammals, with different tissue-expression and substrate-conve ... >> More
17beta-hydroxysteroid dehydrogenases (17beta-HSDs) catalyse the conversion of 17beta-OH (-hydroxy)/17-oxo groups of steroids, and are essential in mammalian hormone physiology. At present, eleven 17beta-HSD isoforms have been defined in mammals, with different tissue-expression and substrate-conversion patterns. We analysed 17beta-HSD type 10 (17beta-HSD10) from humans and Drosophila, the latter known to be essential in development. In addition to the known hydroxyacyl-CoA dehydrogenase, and 3alpha-OH and 17beta-OH activities with sex steroids, we here demonstrate novel activities of 17beta-HSD10. Both species variants oxidize the 20beta-OH and 21-OH groups in C21 steroids, and act as 7beta-OH dehydrogenases of ursodeoxycholic or isoursodeoxycholic acid (also known as 7beta-hydroxylithocholic acid or 7beta-hydroxyisolithocholic acid respectively). Additionally, the human orthologue oxidizes the 7alpha-OH of chenodeoxycholic acid (5beta-cholanic acid, 3alpha,7alpha-diol) and cholic acid (5beta-cholanic acid). These novel substrate specificities are explained by homology models based on the orthologous rat crystal structure, showing a wide hydrophobic cleft, capable of accommodating steroids in different orientations. These properties suggest that the human enzyme is involved in glucocorticoid and gestagen catabolism, and participates in bile acid isomerization. Confocal microscopy and electron microscopy studies reveal that the human form is localized to mitochondria, whereas Drosophila 17beta-HSD10 shows a cytosolic localization pattern, possibly due to an N-terminal sequence difference that in human 17beta-HSD10 constitutes a mitochondrial targeting signal, extending into the Rossmann-fold motif. << Less
Biochem. J. 376:49-60(2003) [PubMed] [EuropePMC]
This publication is cited by 12 other entries.
-
Expression in E. coli and tissue distribution of the human homologue of the mouse Ke 6 gene, 17beta-hydroxysteroid dehydrogenase type 8.
Ohno S., Nishikawa K., Honda Y., Nakajin S.
Expression of the human Ke 6 gene, 17beta-hydroxysteroid dehydrogenase type 8, in E. coli and the substrate specificity of the expressed protein were examined. The tissue distribution of mRNA expression of the human Ke 6 gene was also studied using real-time PCR. Human Ke 6 gene was expressed as a ... >> More
Expression of the human Ke 6 gene, 17beta-hydroxysteroid dehydrogenase type 8, in E. coli and the substrate specificity of the expressed protein were examined. The tissue distribution of mRNA expression of the human Ke 6 gene was also studied using real-time PCR. Human Ke 6 gene was expressed as an enzymatically-active His-tag fusion protein, whose molecular weight was estimated to be 32.5 kDa by SDS-polyacrylamide gel electrophoresis. Expressed human Ke 6 gene effectively catalyzed the conversion of estradiol into estrone. Testosterone, 5alpha-dihydrotestosterone, and 5-androstene-3beta,17beta-diol were also catalyzed into the corresponding 17-ketosteroid at 2.4-5.9% that of estradiol oxidation. Furthermore, expressed enzyme catalyzed the reduction of estrone to estradiol, but the rate was a mere 2.3%. Human Ke 6 gene mRNA was expressed in the various tissues examined, such as brain, cerebellum, heart, lung, kidney, liver, small intestine, ovary, testis, adrenals, placenta, prostate, and stomach. Expression of human Ke 6 gene mRNA was especially abundant in prostate, placenta, and kidney. The levels in prostate and placenta were higher than that in kidney, where it is known to be expressed in large quantities. << Less
Mol. Cell. Biochem. 309:209-215(2008) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Human 3alpha-hydroxysteroid dehydrogenase isoforms (AKR1C1-AKR1C4) of the aldo-keto reductase superfamily: functional plasticity and tissue distribution reveals roles in the inactivation and formation of male and female sex hormones.
Penning T.M., Burczynski M.E., Jez J.M., Hung C.F., Lin H.K., Ma H., Moore M., Palackal N., Ratnam K.
The kinetic parameters, steroid substrate specificity and identities of reaction products were determined for four homogeneous recombinant human 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD) isoforms of the aldo-keto reductase (AKR) superfamily. The enzymes correspond to type 1 3alpha-HSD (AKR1 ... >> More
The kinetic parameters, steroid substrate specificity and identities of reaction products were determined for four homogeneous recombinant human 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD) isoforms of the aldo-keto reductase (AKR) superfamily. The enzymes correspond to type 1 3alpha-HSD (AKR1C4), type 2 3alpha(17beta)-HSD (AKR1C3), type 3 3alpha-HSD (AKR1C2) and 20alpha(3alpha)-HSD (AKR1C1), and share at least 84% amino acid sequence identity. All enzymes acted as NAD(P)(H)-dependent 3-, 17- and 20-ketosteroid reductases and as 3alpha-, 17beta- and 20alpha-hydroxysteroid oxidases. The functional plasticity of these isoforms highlights their ability to modulate the levels of active androgens, oestrogens and progestins. Salient features were that AKR1C4 was the most catalytically efficient, with k(cat)/K(m) values for substrates that exceeded those obtained with other isoforms by 10-30-fold. In the reduction direction, all isoforms inactivated 5alpha-dihydrotestosterone (17beta-hydroxy-5alpha-androstan-3-one; 5alpha-DHT) to yield 5alpha-androstane-3alpha,17beta-diol (3alpha-androstanediol). However, only AKR1C3 reduced Delta(4)-androstene-3,17-dione to produce significant amounts of testosterone. All isoforms reduced oestrone to 17beta-oestradiol, and progesterone to 20alpha-hydroxy-pregn-4-ene-3,20-dione (20alpha-hydroxyprogesterone). In the oxidation direction, only AKR1C2 converted 3alpha-androstanediol to the active hormone 5alpha-DHT. AKR1C3 and AKR1C4 oxidized testosterone to Delta(4)-androstene-3,17-dione. All isoforms oxidized 17beta-oestradiol to oestrone, and 20alpha-hydroxyprogesterone to progesterone. Discrete tissue distribution of these AKR1C enzymes was observed using isoform-specific reverse transcriptase-PCR. AKR1C4 was virtually liver-specific and its high k(cat)/K(m) allows this enzyme to form 5alpha/5beta-tetrahydrosteroids robustly. AKR1C3 was most prominent in the prostate and mammary glands. The ability of AKR1C3 to interconvert testosterone with Delta(4)-androstene-3,17-dione, but to inactivate 5alpha-DHT, is consistent with this enzyme eliminating active androgens from the prostate. In the mammary gland, AKR1C3 will convert Delta(4)-androstene-3,17-dione to testosterone (a substrate aromatizable to 17beta-oestradiol), oestrone to 17beta-oestradiol, and progesterone to 20alpha-hydroxyprogesterone, and this concerted reductive activity may yield a pro-oesterogenic state. AKR1C3 is also the dominant form in the uterus and is responsible for the synthesis of 3alpha-androstanediol which has been implicated as a parturition hormone. The major isoforms in the brain, capable of synthesizing anxiolytic steroids, are AKR1C1 and AKR1C2. These studies are in stark contrast with those in rat where only a single AKR with positional- and stereo-specificity for 3alpha-hydroxysteroids exists. << Less
Biochem. J. 351:67-77(2000) [PubMed] [EuropePMC]
This publication is cited by 15 other entries.
-
Enzymatic beta-Oxidation of the Cholesterol Side Chain in Mycobacterium tuberculosis Bifurcates Stereospecifically at Hydration of 3-Oxo-cholest-4,22-dien-24-oyl-CoA.
Yuan T., Werman J.M., Yin X., Yang M., Garcia-Diaz M., Sampson N.S.
The unique ability of <i>Mycobacterium tuberculosis</i> (Mtb) to utilize host lipids such as cholesterol for survival, persistence, and virulence has made the metabolic pathway of cholesterol an area of great interest for therapeutics development. Herein, we identify and characterize two genes fro ... >> More
The unique ability of <i>Mycobacterium tuberculosis</i> (Mtb) to utilize host lipids such as cholesterol for survival, persistence, and virulence has made the metabolic pathway of cholesterol an area of great interest for therapeutics development. Herein, we identify and characterize two genes from the Cho-region (genomic locus responsible for cholesterol catabolism) of the Mtb genome, <i>chsH3</i> (Rv3538) and <i>chsB1</i> (Rv3502c). Their protein products catalyze two sequential stereospecific hydration and dehydrogenation steps in the β-oxidation of the cholesterol side chain. ChsH3 favors the 22<i>S</i> hydration of 3-oxo-cholest-4,22-dien-24-oyl-CoA in contrast to the previously reported EchA19 (Rv3516), which catalyzes formation of the (22<i>R</i>)-hydroxy-3-oxo-cholest-4-en-24-oyl-CoA from the same enoyl-CoA substrate. ChsB1 is stereospecific and catalyzes dehydrogenation of the ChsH3 product but not the EchA19 product. The X-ray crystallographic structure of the ChsB1 apo-protein was determined at a resolution of 2.03 Å, and the holo-enzyme with bound NAD<sup>+</sup> cofactor was determined at a resolution of 2.21 Å. The homodimeric structure is representative of a classical NAD<sup>+</sup>-utilizing short-chain type alcohol dehydrogenase/reductase, including a Rossmann-fold motif, but exhibits a unique substrate binding site architecture that is of greater length and width than its homologous counterparts, likely to accommodate the bulky steroid substrate. Intriguingly, Mtb utilizes hydratases from the MaoC-like family in sterol side-chain catabolism in contrast to fatty acid β-oxidation in other species that utilize the evolutionarily distinct crotonase family of hydratases. << Less
ACS Infect. Dis. 7:1739-1751(2021) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
Demonstration of 3 alpha(17 beta)-hydroxysteroid dehydrogenase distinct from 3 alpha-hydroxysteroid dehydrogenase in hamster liver.
Ohmura M., Hara A., Nakagawa M., Sawada H.
NAD(+)-linked and NADP(+)-linked 3 alpha-hydroxysteroid dehydrogenases were purified to homogeneity from hamster liver cytosol. The two monomeric enzymes, although having similar molecular masses of 38,000, differed from each other in pI values, activation energy and heat stability. The two protei ... >> More
NAD(+)-linked and NADP(+)-linked 3 alpha-hydroxysteroid dehydrogenases were purified to homogeneity from hamster liver cytosol. The two monomeric enzymes, although having similar molecular masses of 38,000, differed from each other in pI values, activation energy and heat stability. The two proteins also gave different fragmentation patterns by gel electrophoresis after digestion with protease. The NADP(+)-linked enzyme catalysed the oxidoreduction of various 3 alpha-hydroxysteroids, whereas the NAD(+)-linked enzyme oxidized the 3 alpha-hydroxy group of pregnanes and some bile acids, and the 17 beta-hydroxy group of testosterone and androstanes. The thermal stabilities of the 3 alpha- and 17 beta-hydroxysteroid dehydrogenase activities of the NAD(+)-linked enzyme were identical, and the two enzyme activities were inhibited by mixing 17 beta- and 3 alpha-hydroxysteroid substrates, respectively. Medroxyprogesterone acetate, hexoestrol and 3 beta-hydroxysteroids competitively inhibited 3 alpha- and 17 beta-hydroxysteroid dehydrogenase activities of the enzyme. These results show that hamster liver contains a 3 alpha(17 beta)-hydroxysteroid dehydrogenase structurally and functionally distinct from 3 alpha-hydroxysteroid dehydrogenase. << Less
-
Absence of 11-keto reduction of cortisone and 11-ketotestosterone in the model organism zebrafish.
Tsachaki M., Meyer A., Weger B., Kratschmar D.V., Tokarz J., Adamski J., Belting H.G., Affolter M., Dickmeis T., Odermatt A.
Zebrafish are widely used as model organism. Their suitability for endocrine studies, drug screening and toxicity assessements depends on the extent of conservation of specific genes and biochemical pathways between zebrafish and human. Glucocorticoids consist of inactive 11-keto (cortisone and 11 ... >> More
Zebrafish are widely used as model organism. Their suitability for endocrine studies, drug screening and toxicity assessements depends on the extent of conservation of specific genes and biochemical pathways between zebrafish and human. Glucocorticoids consist of inactive 11-keto (cortisone and 11-dehydrocorticosterone) and active 11β-hydroxyl forms (cortisol and corticosterone). In mammals, two 11β-hydroxysteroid dehydrogenases (11β-HSD1 and 11β-HSD2) interconvert active and inactive glucocorticoids, allowing tissue-specific regulation of glucocorticoid action. Furthermore, 11β-HSDs are involved in the metabolism of 11-oxy androgens. As zebrafish and other teleost fish lack a direct homologue of 11β-HSD1, we investigated whether they can reduce 11-ketosteroids. We compared glucocorticoid and androgen metabolism between human and zebrafish using recombinant enzymes, microsomal preparations and zebrafish larvae. Our results provide strong evidence for the absence of 11-ketosteroid reduction in zebrafish. Neither human 11β-HSD3 nor the two zebrafish 11β-HSD3 homologues, previously hypothesized to reduce 11-ketosteroids, converted cortisone and 11-ketotestosterone (11KT) to their 11β-hydroxyl forms. Furthermore, zebrafish microsomes were unable to reduce 11-ketosteroids, and exposure of larvae to cortisone or the synthetic analogue prednisone did not affect glucocorticoid-dependent gene expression. Additionally, a dual-role of 11β-HSD2 by inactivating glucocorticoids and generating the main fish androgen 11KT was supported. Thus, due to the lack of 11-ketosteroid reduction, zebrafish and other teleost fish exhibit a limited tissue-specific regulation of glucocorticoid action, and their androgen production pathway is characterized by sustained 11KT production. These findings are of particular significance when using zebrafish as a model to study endocrine functions, stress responses and effects of pharmaceuticals. << Less
J. Endocrinol. 232:323-335(2017) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.
-
Biochemical Mechanisms and Catabolic Enzymes Involved in Bacterial Estrogen Degradation Pathways.
Chen Y.L., Yu C.P., Lee T.H., Goh K.S., Chu K.H., Wang P.H., Ismail W., Shih C.J., Chiang Y.R.
Estrogens have been classified as group 1 carcinogens by the World Health Organization and represent a significant concern given that they are found in surface waters worldwide, and long-term exposure to estrogen-contaminated water can disrupt sexual development in animals. To date, the estrogen c ... >> More
Estrogens have been classified as group 1 carcinogens by the World Health Organization and represent a significant concern given that they are found in surface waters worldwide, and long-term exposure to estrogen-contaminated water can disrupt sexual development in animals. To date, the estrogen catabolic enzymes and genes remain unknown. Using a tiered functional genomics approach, we identified three estrogen catabolic gene clusters in Sphingomonas sp. strain KC8. We identified several estrone-derived compounds, including 4-hydroxyestrone, a meta-cleavage product, and pyridinestrone acid. The yeast-based estrogen assay suggested that pyridinestrone acid exhibits negligible estrogenic activity. We characterized 17β-estradiol dehydrogenase and 4-hydroxyestrone 4,5-dioxygenase, responsible for the 17-dehydrogenation and meta-cleavage of the estrogen A ring, respectively. The characteristic pyridinestrone acid was detected in estrone-spiked samples collected from two wastewater treatment plants and two suburban rivers in Taiwan. The results significantly expand our understanding of microbial degradation of aromatic steroids at molecular level. << Less
Cell Chem Biol 24:712-724.e7(2017) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
Expression cloning and characterization of human 17 beta-hydroxysteroid dehydrogenase type 2, a microsomal enzyme possessing 20 alpha-hydroxysteroid dehydrogenase activity.
Wu L., Einstein M., Geissler W.M., Chan H.K., Elliston K.O., Andersson S.
17 beta-Hydroxysteroid dehydrogenase (17 beta-HSD) is an enzyme crucial to the regulation of intracellular levels of biologically active steroid hormones in a variety of tissues. Here, we report the isolation, structure, and characterization of a cDNA encoding the human 17 beta-HSD type 2. A 1.4-k ... >> More
17 beta-Hydroxysteroid dehydrogenase (17 beta-HSD) is an enzyme crucial to the regulation of intracellular levels of biologically active steroid hormones in a variety of tissues. Here, we report the isolation, structure, and characterization of a cDNA encoding the human 17 beta-HSD type 2. A 1.4-kilobase cDNA was identified, and DNA sequence analysis indicated that 17 beta-HSD type 2 was a protein of 387 amino acids with a predicted molecular weight of 42,782. The protein contained an amino-terminal type II signal-anchor motif and a carboxyl-terminal endoplasmic reticulum retention motif, which suggested that 17 beta-HSD type 2 was associated with the membranes of the endoplasmic reticulum. 17 beta-HSD type 2 was capable of catalyzing the interconversion of testosterone and androstenedione as well as estradiol and estrone. The enzyme also demonstrated 20 alpha-HSD activity toward 20 alpha-dihydroprogesterone. The amount of 17 beta-HSD type 2 mRNA in placenta was found to be high. The data suggest that the 17 beta-HSD type 2 cDNA encodes the microsomal 17 beta-HSD of human placenta, described by several laboratories. << Less
J. Biol. Chem. 268:12964-12969(1993) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.