Enzymes
UniProtKB help_outline | 5,305 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline (R)-mevalonate Identifier CHEBI:36464 Charge -1 Formula C6H11O4 InChIKeyhelp_outline KJTLQQUUPVSXIM-ZCFIWIBFSA-M SMILEShelp_outline C[C@@](O)(CCO)CC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 6 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,190 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,511 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (3S)-hydroxy-3-methylglutaryl-CoA Identifier CHEBI:43074 Charge -5 Formula C27H39N7O20P3S InChIKeyhelp_outline CABVTRNMFUVUDM-VRHQGPGLSA-I SMILEShelp_outline C[C@](O)(CC([O-])=O)CC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 8 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,120 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:14833 | RHEA:14834 | RHEA:14835 | RHEA:14836 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Inhibition of the class II HMG-CoA reductase of Pseudomonas mevalonii.
Hedl M., Rodwell V.W.
There are two structural classes of HMG-CoA reductase, the third enzyme of the mevalonate pathway of isopentenyl diphosphate biosynthesis-the Class I enzymes of eukaryotes and the Class II enzymes of certain eubacteria. Structural requirements for ligand binding to the Class II HMG-CoA reductase o ... >> More
There are two structural classes of HMG-CoA reductase, the third enzyme of the mevalonate pathway of isopentenyl diphosphate biosynthesis-the Class I enzymes of eukaryotes and the Class II enzymes of certain eubacteria. Structural requirements for ligand binding to the Class II HMG-CoA reductase of Pseudomonas mevalonii were investigated. For conversion of mevalonate to HMG-CoA the -CH(3), -OH, and -CH(2)COO(-) groups on carbon 3 of mevalonate were essential for ligand recognition. The statin drug Lovastatin inhibited both the conversion of HMG-CoA to mevalonate and the reverse of this reaction. Inhibition was competitive with respect to HMG-CoA or mevalonate and noncompetitive with respect to NADH or NAD(+). K(i) values were millimolar. The over 10(4)-fold difference in statin K(i) values that distinguishes the two classes of HMG-CoA reductase may result from differences in the specific contacts between the statin and residues present in the Class I enzymes but lacking in a Class II HMG-CoA reductase. << Less
-
Active form of Pseudomonas mevalonii 3-hydroxy-3-methylglutaryl coenzyme A reductase.
Rogers K.S., Rodwell V.W., Geiger P.
Based on multiple gel permeation chromatographic experiments, we report a Stokes radius of 59.7 A for Pseudomonas mevalonii 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase; EC 1.1.1.88) and its His381Asn, His381Gln, and His381Lys mutant enzymes. Comparison of this Stokes radius ... >> More
Based on multiple gel permeation chromatographic experiments, we report a Stokes radius of 59.7 A for Pseudomonas mevalonii 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase; EC 1.1.1.88) and its His381Asn, His381Gln, and His381Lys mutant enzymes. Comparison of this Stokes radius with the radius calculated from the crystal structure indicated that the active form of P. mevalonii HMG-CoA reductase was a hexamer and not a dimer as previously thought. The Stokes radius, an S26,w of 11.0, and an estimated V of 0.723 were used in the Svedberg equation to calculate an anhydrous molecular mass of 270,084 Da for P. mevalonii HMG-CoA reductase (monomer mass 45,538 Da), consistent with the enzyme being a hexamer in solution. The Stokes radii of all standard proteins examined correlated with the inverse error function complement of their partition coefficient, Kd. Kd did not correlate with logarithm of the standard protein's molecular weight. Eight nonstandard proteins had Stokes radii that matched their crystallographic radii of longest axis. This indicated that the frozen conformation of a protein in its crystal form can dictate restraints on its shape in solution. << Less