Reaction participants Show >> << Hide
- Name help_outline 17α-hydroxyprogesterone Identifier CHEBI:17252 (CAS: 68-96-2) help_outline Charge 0 Formula C21H30O3 InChIKeyhelp_outline DBPWSSGDRRHUNT-CEGNMAFCSA-N SMILEShelp_outline [H][C@@]12CC[C@](O)(C(C)=O)[C@@]1(C)CC[C@@]1([H])[C@@]2([H])CCC2=CC(=O)CC[C@]12C 2D coordinates Mol file for the small molecule Search links Involved in 7 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
reduced [NADPH—hemoprotein reductase]
Identifier
RHEA-COMP:11964
Reactive part
help_outline
- Name help_outline FMNH2 Identifier CHEBI:57618 (Beilstein: 6258176) help_outline Charge -2 Formula C17H21N4O9P InChIKeyhelp_outline YTNIXZGTHTVJBW-SCRDCRAPSA-L SMILEShelp_outline Cc1cc2Nc3c([nH]c(=O)[nH]c3=O)N(C[C@H](O)[C@H](O)[C@H](O)COP([O-])([O-])=O)c2cc1C 2D coordinates Mol file for the small molecule Search links Involved in 810 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,727 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline androst-4-ene-3,17-dione Identifier CHEBI:16422 (CAS: 63-05-8) help_outline Charge 0 Formula C19H26O2 InChIKeyhelp_outline AEMFNILZOJDQLW-QAGGRKNESA-N SMILEShelp_outline [H][C@@]12CCC3=CC(=O)CC[C@]3(C)[C@@]1([H])CC[C@]1(C)C(=O)CC[C@@]21[H] 2D coordinates Mol file for the small molecule Search links Involved in 19 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline acetate Identifier CHEBI:30089 (CAS: 71-50-1) help_outline Charge -1 Formula C2H3O2 InChIKeyhelp_outline QTBSBXVTEAMEQO-UHFFFAOYSA-M SMILEShelp_outline CC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 180 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
oxidized [NADPH—hemoprotein reductase]
Identifier
RHEA-COMP:11965
Reactive part
help_outline
- Name help_outline FMN Identifier CHEBI:58210 Charge -3 Formula C17H18N4O9P InChIKeyhelp_outline ANKZYBDXHMZBDK-SCRDCRAPSA-K SMILEShelp_outline C12=NC([N-]C(C1=NC=3C(N2C[C@@H]([C@@H]([C@@H](COP(=O)([O-])[O-])O)O)O)=CC(=C(C3)C)C)=O)=O 2D coordinates Mol file for the small molecule Search links Involved in 820 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:14753 | RHEA:14754 | RHEA:14755 | RHEA:14756 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Engineering, expression, and purification of "soluble" human cytochrome P45017alpha and its functional characterization.
Pechurskaya T.A., Lukashevich O.P., Gilep A.A., Usanov S.A.
To engineer a "soluble" form of membrane-bound cytochrome P45017alpha (CYP17)--a key enzyme in steroid hormone biosynthesis--in the present work we have built a computer model of the tertiary structure of the hemeprotein, identified the surface hydrophobic amino acid residues, substituted these re ... >> More
To engineer a "soluble" form of membrane-bound cytochrome P45017alpha (CYP17)--a key enzyme in steroid hormone biosynthesis--in the present work we have built a computer model of the tertiary structure of the hemeprotein, identified the surface hydrophobic amino acid residues, substituted these residues for more hydrophilic ones, and expressed and purified hydrophilized forms of CYP17. We have constructed and purified the following mutant forms of human CYP17: CYP17dH (CYP17 with deleted hydrophobic N-terminal sequence (Delta(23))) and CYP17mod (CYP17dH with substituted cluster of hydrophobic amino acid residues in the region of the FG-loop). Removal of the N-terminal sequence responsible for interaction with the membrane does not dramatically change the association of the protein with the membrane. However, CYP17mod containing hydrophilic FG-loop is mostly localized in the cytosolic fraction. Thus, in the present work we for the first time engineered a "soluble" form of the usually membrane-bound human CYP17 that is not bound to membrane. The expression degree of CYP17mod is approximately 900 nmol/liter of culture. The hemeprotein can be purified to apparent homogeneity without using detergents at any purification step. It is shown that replacement of hydrophobic amino acid residues in the FG-loop region does not change the metabolic profile during hydroxylation of steroids that is characteristic for wild type CYP17. Besides, the modification of the hemeprotein does not affect the affinity of CYP17 to steroid substrates. The engineered "soluble" form of human CYP17 is used as a subject for crystallization of the hemeprotein. << Less
Biochemistry (Mosc) 73:806-811(2008) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Role of cytochrome b5 in the modulation of the enzymatic activities of cytochrome P450 17alpha-hydroxylase/17,20-lyase (P450 17A1).
Bhatt M.R., Khatri Y., Rodgers R.J., Martin L.L.
Cytochrome b5 (cyt b5) is a small hemoprotein that plays a significant role in the modulation of activities of an important steroidogenic enzyme, cytochrome P450 17α-hydroxylase/17,20-lyase (P450 17A1, CYP17A1). Located in the zona fasciculata and zona reticularis of the adrenal cortex and in the ... >> More
Cytochrome b5 (cyt b5) is a small hemoprotein that plays a significant role in the modulation of activities of an important steroidogenic enzyme, cytochrome P450 17α-hydroxylase/17,20-lyase (P450 17A1, CYP17A1). Located in the zona fasciculata and zona reticularis of the adrenal cortex and in the gonads, P450 17A1 catalyzes two different reactions in the steroidogenic pathway; the 17α-hydroxylation and 17,20-lyase, in the endoplasmic reticulum of these respective tissues. The activities of P450 17A1 are regulated by cyt b5 that enhances the 17,20-lyase reaction by promoting the coupling of P450 17A1 and cytochrome P450 reductase (CPR), allosterically. Cyt b5 can also act as an electron donor to enhance the 16-ene-synthase activity of human P450 17A1. In this review, we discuss the many roles of cyt b5 and focus on the modulation of CYP17A1 activities by cyt b5 and the mechanisms involved. << Less
J Steroid Biochem Mol Biol 170:2-18(2017) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Molecular cloning and heterologous expression in E. coli of cytochrome P45017alpha. Comparison of structural and functional properties of substrate-specific cytochromes P450 from different species.
Gilep A.A., Estabrook R.W., Usanov S.A.
To elucidate the nature of substrate specificity and intrinsic mechanism of hydroxylation of steroids, in the present work we carried out molecular cloning and heterologous expression of cDNA for three new forms of cytochrome P45017alpha from species of the Bovidae family (sheep, goat, and bison), ... >> More
To elucidate the nature of substrate specificity and intrinsic mechanism of hydroxylation of steroids, in the present work we carried out molecular cloning and heterologous expression of cDNA for three new forms of cytochrome P45017alpha from species of the Bovidae family (sheep, goat, and bison), which catalyze 17alpha-hydroxylation of both progesterone (P4) or pregnenolone (P5) and 17,20-lyase reaction resulting in cleavage of side chain with formation of C(19)-steroids. Recombinant cytochromes P45017alpha were expressed in E. coli as derivatives, containing a six-His tag at the C-terminal sequence that simplifies purification of the cloned heme proteins using metal-affinity chromatography. Highly purified cytochromes P45017alpha were used for determination of enzyme activity and specificity in relation to progesterone, pregnenolone, 17alpha-hydroxyprogesterone, and 17alpha-hydroxypregnenolone with registration of the kinetics of reaction product formation using HPLC. It is shown that each form of cytochrome P45017alpha is characterized by a specific profile of enzyme activity and dependence of 17,20-lyase reaction on the presence of cytochrome b(5) in the reaction mixture. The analysis of the activity of the known forms of cytochrome P45017alpha in view of the data obtained in the present work allows the division of known cytochromes P45017alpha into three main group: group A (pig, hamster, rat), cytochromes P45017alpha catalyze the reaction of 17alpha-hydroxylation of both P4 and P5 steroids and the 17,20-lyase reaction of 17alpha-hydroxyprogesterone and 17alpha-hydroxypregnenolone; group B (human, bovine, sheep, goat, and bison), cytochromes P45017alpha, which have no or have insignificant 17,20-lyase activity in relation to 17alpha-hydroxyprogesterone; group C (guinea pig), cytochrome P45017alpha which either has no or has insignificant 17,20-lyase activity on transformation 17alpha-hydroxypregnenolone to dehydroepiandrosterone. << Less
Biochemistry (Mosc.) 68:86-98(2003) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Structures of cytochrome P450 17A1 with prostate cancer drugs abiraterone and TOK-001.
DeVore N.M., Scott E.E.
Cytochrome P450 17A1 (also known as CYP17A1 and cytochrome P450c17) catalyses the biosynthesis of androgens in humans. As prostate cancer cells proliferate in response to androgen steroids, CYP17A1 inhibition is a new strategy to prevent androgen synthesis and treat lethal metastatic castration-re ... >> More
Cytochrome P450 17A1 (also known as CYP17A1 and cytochrome P450c17) catalyses the biosynthesis of androgens in humans. As prostate cancer cells proliferate in response to androgen steroids, CYP17A1 inhibition is a new strategy to prevent androgen synthesis and treat lethal metastatic castration-resistant prostate cancer, but drug development has been hampered by lack of information regarding the structure of CYP17A1. Here we report X-ray crystal structures of CYP17A1, which were obtained in the presence of either abiraterone, a first-in-class steroidal inhibitor recently approved by the US Food and Drug Administration for late-stage prostate cancer, or TOK-001, an inhibitor that is currently undergoing clinical trials. Both of these inhibitors bind the haem iron, forming a 60° angle above the haem plane and packing against the central I helix with the 3β-OH interacting with aspargine 202 in the F helix. Notably, this binding mode differs substantially from those that are predicted by homology models and from steroids in other cytochrome P450 enzymes with known structures, and some features of this binding mode are more similar to steroid receptors. Whereas the overall structure of CYP17A1 provides a rationale for understanding many mutations that are found in patients with steroidogenic diseases, the active site reveals multiple steric and hydrogen bonding features that will facilitate a better understanding of the enzyme's dual hydroxylase and lyase catalytic capabilities and assist in rational drug design. Specifically, structure-based design is expected to aid development of inhibitors that bind only CYP17A1 and solely inhibit its androgen-generating lyase activity to improve treatment of prostate and other hormone-responsive cancers. << Less
-
Cytochrome b5 augments the 17,20-lyase activity of human P450c17 without direct electron transfer.
Auchus R.J., Lee T.C., Miller W.L.
In the biosynthesis of steroid hormones, P450c17 is the single enzyme that catalyzes both the 17alpha-hydroxylation of 21-carbon steroids and the 17,20-lyase activity that cleaves the C17-C20 bond to produce C19 sex steroids. Cytochrome b5 augments the 17,20-lyase activity of cytochrome P450c17 in ... >> More
In the biosynthesis of steroid hormones, P450c17 is the single enzyme that catalyzes both the 17alpha-hydroxylation of 21-carbon steroids and the 17,20-lyase activity that cleaves the C17-C20 bond to produce C19 sex steroids. Cytochrome b5 augments the 17,20-lyase activity of cytochrome P450c17 in vitro, but this has not been demonstrated in membranes, and the mechanism of this action is unknown. We expressed human P450c17, human P450-oxidoreductase (OR), and/or human cytochrome b5 in Saccharomyces cerevisiae and analyzed the 17alpha-hydroxylase and 17,20-lyase activities of the resulting yeast microsomes. Yeast expressing only P450c17 have 17alpha-hydroxylase and trace 17,20-lyase activities toward both Delta4 and Delta5 steroids. Coexpression of human OR with P450c17 increases the Vmax of both the 17alpha-hydroxylase and 17,20-lyase reactions 5-fold; coexpression of human b5 with P450c17 also increases the Vmax of the 17,20-lyase reactions but not of the 17alpha-hydroxylase reactions. Simultaneous expression of human b5 with P450c17 and OR, or addition of purified human b5 to microsomes from yeast coexpressing human P450c17 and OR, further increases the Vmax of the 17,20-lyase reaction without altering 17alpha-hydroxylase activity. Genetically engineered yeast and mixing experiments demonstrate that OR is both necessary and sufficient for microsomal 17,20-lyase activity. Addition of purified human holo-b5, apo-b5, or cytochrome c to microsomes containing both human P450c17 and OR demonstrate that the stimulatory action of b5 does not require electron transfer from b5 to P450c17. These data suggest that human b5 acts principally as an allosteric effector that interacts primarily with the P450c17.OR complex to stimulate 17, 20-lyase activity. << Less
J. Biol. Chem. 273:3158-3165(1998) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Mechanistic Scrutiny Identifies a Kinetic Role for Cytochrome b5 Regulation of Human Cytochrome P450c17 (CYP17A1, P450 17A1).
Simonov A.N., Holien J.K., Yeung J.C., Nguyen A.D., Corbin C.J., Zheng J., Kuznetsov V.L., Auchus R.J., Conley A.J., Bond A.M., Parker M.W., Rodgers R.J., Martin L.L.
Cytochrome P450c17 (P450 17A1, CYP17A1) is a critical enzyme in the synthesis of androgens and is now a target enzyme for the treatment of prostate cancer. Cytochrome P450c17 can exhibit either one or two physiological enzymatic activities differentially regulated by cytochrome b5. How this is ach ... >> More
Cytochrome P450c17 (P450 17A1, CYP17A1) is a critical enzyme in the synthesis of androgens and is now a target enzyme for the treatment of prostate cancer. Cytochrome P450c17 can exhibit either one or two physiological enzymatic activities differentially regulated by cytochrome b5. How this is achieved remains unknown. Here, comprehensive in silico, in vivo and in vitro analyses were undertaken. Fluorescence Resonance Energy Transfer analysis showed close interactions within living cells between cytochrome P450c17 and cytochrome b5. In silico modeling identified the sites of interaction and confirmed that E48 and E49 residues in cytochrome b5 are essential for activity. Quartz crystal microbalance studies identified specific protein-protein interactions in a lipid membrane. Voltammetric analysis revealed that the wild type cytochrome b5, but not a mutated, E48G/E49G cyt b5, altered the kinetics of electron transfer between the electrode and the P450c17. We conclude that cytochrome b5 can influence the electronic conductivity of cytochrome P450c17 via allosteric, protein-protein interactions. << Less
-
Unveiling the crucial intermediates in androgen production.
Mak P.J., Gregory M.C., Denisov I.G., Sligar S.G., Kincaid J.R.
Ablation of androgen production through surgery is one strategy against prostate cancer, with the current focus placed on pharmaceutical intervention to restrict androgen synthesis selectively, an endeavor that could benefit from the enhanced understanding of enzymatic mechanisms that derives from ... >> More
Ablation of androgen production through surgery is one strategy against prostate cancer, with the current focus placed on pharmaceutical intervention to restrict androgen synthesis selectively, an endeavor that could benefit from the enhanced understanding of enzymatic mechanisms that derives from characterization of key reaction intermediates. The multifunctional cytochrome P450 17A1 (CYP17A1) first catalyzes the typical hydroxylation of its primary substrate, pregnenolone (PREG) and then also orchestrates a remarkable C17-C20 bond cleavage (lyase) reaction, converting the 17-hydroxypregnenolone initial product to dehydroepiandrosterone, a process representing the first committed step in the biosynthesis of androgens. Now, we report the capture and structural characterization of intermediates produced during this lyase step: an initial peroxo-anion intermediate, poised for nucleophilic attack on the C20 position by a substrate-associated H-bond, and the crucial ferric peroxo-hemiacetal intermediate that precedes carbon-carbon (C-C) bond cleavage. These studies provide a rare glimpse at the actual structural determinants of a chemical transformation that carries profound physiological consequences. << Less
Proc Natl Acad Sci U S A 112:15856-15861(2015) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Functional expression and characterisation of human cytochrome P45017alpha in Pichia pastoris.
Kolar N.W., Swart A.C., Mason J.I., Swart P.
Human cytochrome P45017alpha (CYP17), present in mammalian adrenal and gonadal tissues, catalyses both steroid 17-hydroxylation and C17,20 lyase reactions, producing intermediates for the glucocorticoid and androgenic pathways, respectively. The characterisation of this complex enzyme was initiall ... >> More
Human cytochrome P45017alpha (CYP17), present in mammalian adrenal and gonadal tissues, catalyses both steroid 17-hydroxylation and C17,20 lyase reactions, producing intermediates for the glucocorticoid and androgenic pathways, respectively. The characterisation of this complex enzyme was initially hampered due to low level in vivo expression of CYP17. Heterologous expression systems have contributed greatly to our current knowledge of CYP17's dual catalytic activity. However, due to the hydrophobic nature of this membrane-bound protein, primarily truncated and modified forms of CYP17 are currently being expressed heterologously. Although the N-terminally modified enzyme has been well characterised, protein structure and function studies still necessitate the expression of unmodified, wild-type CYP17. We report here the expression of a catalytically active, unmodified human CYP17 in the industrial methylotrophic yeast, Pichia pastoris. A typical P450 carbon monoxide difference spectrum, with an absorption maximum at 448nm and a substrate-induced type I spectrum were recorded using a detergent-solubilised cellular fraction containing CYP17. The expressed enzyme catalysed the conversion of progesterone to 17-hydroxyprogesterone as well as 16-hydroxyprogesterone, a product unique to human and chimpanzee CYP17. This is the first report showing the heterologous expression of a fully functional human steroidogenic cytochrome P450 enzyme in P. pastoris. << Less
J Biotechnol 129:635-644(2007) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Mechanism of 17alpha,20-Lyase and New Hydroxylation Reactions of Human Cytochrome P450 17A1: 18O LABELING AND OXYGEN SURROGATE EVIDENCE FOR A ROLE OF A PERFERRYL OXYGEN.
Yoshimoto F.K., Gonzalez E., Auchus R.J., Guengerich F.P.
Cytochrome P450 (P450) reactions can involve C-C bond cleavage, and several of these are critical in steroid and sterol biosynthesis. The mechanisms of P450s 11A1, 17A1, 19A1, and 51A1 have been controversial, in the context of the role of ferric peroxide (FeO2 (-)) versus perferryl (FeO(3+), comp ... >> More
Cytochrome P450 (P450) reactions can involve C-C bond cleavage, and several of these are critical in steroid and sterol biosynthesis. The mechanisms of P450s 11A1, 17A1, 19A1, and 51A1 have been controversial, in the context of the role of ferric peroxide (FeO2 (-)) versus perferryl (FeO(3+), compound I) chemistry. We reinvestigated the 17α-hydroxyprogesterone and 17α-hydroxypregnenolone 17α,20-lyase reactions of human P450 17A1 and found incorporation of one (18)O atom (from (18)O2) into acetic acid, consonant with proposals for a ferric peroxide mechanism (Akhtar, M., Lee-Robichaud, P., Akhtar, M. E., and Wright, J. N. (1997) J. Steroid Biochem. Mol. Biol. 61, 127-132; Akhtar, M., Wright, J. N., and Lee-Robichaud, P. (2011) J. Steroid Biochem. Mol. Biol. 125, 2-12). However, the reactions were supported by iodosylbenzene (a precursor of the FeO(3+) species) but not by H2O2 We propose three mechanisms that can involve the FeO(3+) entity and that explain the (18)O label in the acetic acid, two involving the intermediacy of an acetyl radical and one a steroid 17,20-dioxetane. P450 17A1 was found to perform 16-hydroxylation reactions on its 17α-hydroxylated products to yield 16,17α-dihydroxypregnenolone and progesterone, suggesting the presence of an active perferryloxo active species of P450 17A1 when its lyase substrate is bound. The 6β-hydroxylation of 16α,17α-dihydroxyprogesterone and the oxidation of both 16α,17α-dihydroxyprogesterone and 16α,17α-dihydroxypregnenolone to 16-hydroxy lyase products were also observed. We provide evidence for the contribution of a compound I mechanism, although contribution of a ferric peroxide pathway in the 17α,20-lyase reaction cannot be excluded. << Less
J. Biol. Chem. 291:17143-17164(2016) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.
-
Bioconversion of steroids in vitro by testes from autoimmunized rabbits.
Nowotny E., Sananez R.D., Nattero G., Yantorno C., Faillaci M.G.
Hoppe Seylers Z Physiol Chem 355:716-720(1974) [PubMed] [EuropePMC]