Enzymes
UniProtKB help_outline | 1 proteins |
Reaction participants Show >> << Hide
- Name help_outline a 3-oxo-Δ5-steroid Identifier CHEBI:47907 Charge 0 Formula C19H27OR SMILEShelp_outline C12C(C3C(C(CC3)*)(C)CC1)CC=C4C2(CCC(C4)=O)C 2D coordinates Mol file for the small molecule Search links Involved in 12 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a 3-oxo-Δ4-steroid Identifier CHEBI:47909 Charge 0 Formula C19H27OR SMILEShelp_outline C12C(C3C(C(CC3)*)(C)CC1)CCC=4C2(CCC(C4)=O)C 2D coordinates Mol file for the small molecule Search links Involved in 136 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:14709 | RHEA:14710 | RHEA:14711 | RHEA:14712 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
Specific form(s) of this reaction
Publications
-
Cholesterol oxidase is required for virulence of Mycobacterium tuberculosis.
Brzostek A., Dziadek B., Rumijowska-Galewicz A., Pawelczyk J., Dziadek J.
Recent reports have indicated that cholesterol plays a crucial role during the uptake of mycobacteria by macrophages. However, the significance of cholesterol modification enzymes encoded by Mycobacterium tuberculosis for bacterial pathogenicity remains unknown. Here, the authors explored whether ... >> More
Recent reports have indicated that cholesterol plays a crucial role during the uptake of mycobacteria by macrophages. However, the significance of cholesterol modification enzymes encoded by Mycobacterium tuberculosis for bacterial pathogenicity remains unknown. Here, the authors explored whether the well-known cholesterol modification enzyme, cholesterol oxidase (ChoD), is important for virulence of the tubercle bacillus. Homologous recombination was used to replace the choD gene from the M. tuberculosis genome with a nonfunctional copy. The resultant mutant (delta choD) was attenuated in peritoneal macrophages. No attenuation in macrophages was observed when the same strain was complemented with an intact choD gene controlled by a heat shock promoter (delta choDP(hsp)choD). The mice infection experiments confirm the significance of ChoD in the pathogenesis of M. tuberculosis. << Less
FEMS Microbiol. Lett. 275:106-112(2007) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Cholesterol oxidase: sources, physical properties and analytical applications.
MacLachlan J., Wotherspoon A.T., Ansell R.O., Brooks C.J.
Since Flegg (H.M. Flegg, An investigation of the determination of serum cholesterol by an enzymatic method, Ann. Clin. Biochem. 10 (1973) 79-84) and Richmond (W. Richmond, The development of an enzymatic technique for the assay of cholesterol in biological fluids, Scand. J. clin. Lab. Invest. 29 ( ... >> More
Since Flegg (H.M. Flegg, An investigation of the determination of serum cholesterol by an enzymatic method, Ann. Clin. Biochem. 10 (1973) 79-84) and Richmond (W. Richmond, The development of an enzymatic technique for the assay of cholesterol in biological fluids, Scand. J. clin. Lab. Invest. 29 (1972) 25; W. Richmond, Preparation and properties of a bacterial cholesterol oxidase from Nocardia sp. and its application to enzyme assay of total cholesterol in serum, Clinical Chemistry 19 (1973) 1350-1356) first illustrated the suitability of cholesterol oxidase (COD) for the analysis of serum cholesterol, COD has risen to become the most widely used enzyme in clinical laboratories with the exception of glucose oxidase (GOD). The use is widespread because assays incorporating the enzyme are extremely simple, specific, and highly sensitive and thus offer distinct advantages over the Liebermann-Burchard analytical methodologies which employ corrosive reagents and can be prone to unreliable results due to interfering substances such as bilirubin. Individuals can now readily determine their own serum cholesterol levels with a simple disposable test kit. This review discusses COD in some detail and includes the topics: (1) The variety of bacterial sources available; (2) The various extraction/purification protocols utilised in order to obtain protein of sufficient clarification (purity) for use in food/clinical analysis; (3) Significant differences in the properties of the individual enzymes; (4) Substrate specificities of the various enzymes; (5) Examples of biological assays which have employed cholesterol oxidase as an integral part of the analysis, and the various assay protocols; (6) New steroidal products of COD. This review is not a comprehensive description of published work, but is intended to provide an account of recent and current research, and should promote further interest in the application of enzymes to analytical selectivity. << Less
J Steroid Biochem Mol Biol 72:169-195(2000) [PubMed] [EuropePMC]
-
Water in the active site of ketosteroid isomerase.
Hanoian P., Hammes-Schiffer S.
Classical molecular dynamics simulations were utilized to investigate the structural and dynamical properties of water in the active site of ketosteroid isomerase (KSI) to provide insight into the role of these water molecules in the enzyme-catalyzed reaction. This reaction is thought to proceed v ... >> More
Classical molecular dynamics simulations were utilized to investigate the structural and dynamical properties of water in the active site of ketosteroid isomerase (KSI) to provide insight into the role of these water molecules in the enzyme-catalyzed reaction. This reaction is thought to proceed via a dienolate intermediate that is stabilized by hydrogen bonding with residues Tyr16 and Asp103. A comparative study was performed for the wild-type (WT) KSI and the Y16F, Y16S, and Y16F/Y32F/Y57F (FFF) mutants. These systems were studied with three different bound ligands: equilenin, which is an intermediate analog, and the intermediate states of two steroid substrates. Several distinct water occupation sites were identified in the active site of KSI for the WT and mutant systems. Three additional sites were identified in the Y16S mutant that were not occupied in WT KSI or the other mutants studied. The number of water molecules directly hydrogen bonded to the ligand oxygen was approximately two in the Y16S mutant and one in the Y16F and FFF mutants, with intermittent hydrogen bonding of one water molecule in WT KSI. The molecular dynamics trajectories of the Y16F and FFF mutants reproduced the small conformational changes of residue 16 observed in the crystal structures of these two mutants. Quantum mechanical/molecular mechanical calculations of (1)H NMR chemical shifts of the protons in the active site hydrogen-bonding network suggest that the presence of water in the active site does not prevent the formation of short hydrogen bonds with far-downfield chemical shifts. The molecular dynamics simulations indicate that the active site water molecules exchange much more frequently for WT KSI and the FFF mutant than for the Y16F and Y16S mutants. This difference is most likely due to the hydrogen-bonding interaction between Tyr57 and an active site water molecule that is persistent in the Y16F and Y16S mutants but absent in the FFF mutant and significantly less probable in WT KSI. << Less
-
Crystal structure determination of cholesterol oxidase from Streptomyces and structural characterization of key active site mutants.
Yue Q.K., Kass I.J., Sampson N.S., Vrielink A.
Cholesterol oxidase is a monomeric flavoenzyme which catalyzes the oxidation and isomerization of cholesterol to cholest-4-en-3-one. The enzyme interacts with lipid bilayers in order to bind its steroid substrate. The X-ray structure of the enzyme from Brevibacterium sterolicum revealed two loops, ... >> More
Cholesterol oxidase is a monomeric flavoenzyme which catalyzes the oxidation and isomerization of cholesterol to cholest-4-en-3-one. The enzyme interacts with lipid bilayers in order to bind its steroid substrate. The X-ray structure of the enzyme from Brevibacterium sterolicum revealed two loops, comprising residues 78-87 and residues 433-436, which act as a lid over the active site and facilitate binding of the substrate [Vrielink et al. (1991) J. Mol. Biol. 219, 533-554; Li et al. (1993) Biochemistry 32, 11507-11515]. It was postulated that these loops must open, forming a hydrophobic channel between the membrane and the active site of the protein and thus sequestering the cholesterol substrate from the aqueous environment. Here we describe the three-dimensional structure of the homologous enzyme from Streptomyces refined to 1.5 A resolution. Structural comparisons to the enzyme from B. sterolicum reveal significant conformational differences in these loop regions; in particular, a region of the loop comprising residues 78-87 adopts a small amphipathic helical turn with hydrophobic residues directed toward the active site cavity and hydrophilic residues directed toward the external surface of the molecule. It seems reasonable that this increased rigidity reduces the entropy loss that occurs upon binding substrate. Consequently, the Streptomyces enzyme is a more efficient catalyst. In addition, we have determined the structures of three active site mutants which have significantly reduced activity for either the oxidation (His447Asn and His447Gln) or the isomerization (Glu361Gln). Our structural and kinetic data indicate that His447 and Glu361 act as general base catalysts in association with conserved water H2O541 and Asn485. The His447, Glu361, H2O541, and Asn485 hydrogen bond network is conserved among other oxidoreductases. This catalytic tetrad appears to be a structural motif that occurs in flavoenzymes that catalyze the oxidation of unactivated alcohols. << Less
Biochemistry 38:4277-4286(1999) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Enzymatic mechanisms for catalysis of enolization: ketosteroid isomerase.
Pollack R.M.
Breaking a carbon-hydrogen bond adjacent to a carbonyl is a slow step in a large number of chemical reactions. However, many enzymes are capable of catalyzing this reaction with great efficiency. One of the most proficient of these enzymes is 3-oxo-Delta5-steroid isomerase (KSI), which catalyzes t ... >> More
Breaking a carbon-hydrogen bond adjacent to a carbonyl is a slow step in a large number of chemical reactions. However, many enzymes are capable of catalyzing this reaction with great efficiency. One of the most proficient of these enzymes is 3-oxo-Delta5-steroid isomerase (KSI), which catalyzes the isomerization of a wide variety of 3-oxo-Delta5-steroids to their Delta4-conjugated isomers. In this review, the mechanism of KSI is discussed, with particular emphasis on energetic considerations. Both experimental and theoretical approaches are considered to explain the mechanistic details of the reaction. << Less
-
Rv1106c from Mycobacterium tuberculosis is a 3beta-hydroxysteroid dehydrogenase.
Yang X., Dubnau E., Smith I., Sampson N.S.
New approaches are required to combat Mycobacterium tuberculosis (Mtb), especially the multi-drug resistant and extremely drug resistant organisms (MDR-TB and XDR-TB). There are many reports that mycobacteria oxidize 3beta-hydroxysterols to 3-ketosteroids, but the enzymes responsible for this acti ... >> More
New approaches are required to combat Mycobacterium tuberculosis (Mtb), especially the multi-drug resistant and extremely drug resistant organisms (MDR-TB and XDR-TB). There are many reports that mycobacteria oxidize 3beta-hydroxysterols to 3-ketosteroids, but the enzymes responsible for this activity have not been identified in mycobacterial species. In this work, the Rv1106c gene that is annotated as a 3beta-hydroxysteroid dehydrogenase in Mtb has been cloned and heterologously expressed. The purified enzyme was kinetically characterized and found to have a pH optimum between 8.5 and 9.5. The enzyme, which is a member of the short chain dehydrogenase superfamily, uses NAD+ as a cofactor and oxidizes cholesterol, pregnenolone, and dehydroepiandrosterone to their respective 3-keto-4-ene products. The enzyme forms a ternary complex with NAD+ binding before the sterol. The enzyme shows no substrate preference for dehydroepiandrosterone versus pregnenolone with second-order rate constants (kcat/Km) of 3.2 +/- 0.4 and 3.9 +/-0.9 microM-1 min-1, respectively, at pH 8.5, 150 mM NaCl, 30 mM MgCl2, and saturating NAD+. Trilostane is a competitive inhibitor of dehydroepiandrosterone with a Ki of 197 +/-8 microM. The expression of the 3beta-hydroxysteroid dehydrogenase in Mtb is intracellular. Disruption of the 3beta-hydroxysteroid dehydrogenase gene in Mtb abrogates mycobacterial cholesterol oxidation activity. These data are consistent with the Rv1106c gene being the one responsible for 3beta-hydroxysterol oxidation in Mtb. << Less
Biochemistry 46:9058-9067(2007) [PubMed] [EuropePMC]
This publication is cited by 7 other entries.