Reaction participants Show >> << Hide
- Name help_outline a polar amino acid Identifier CHEBI:62031 Charge 0 Formula C2H4NO2R SMILEShelp_outline C(C([O-])=O)(*)[NH3+] 2D coordinates Mol file for the small molecule Search links Involved in 301 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,284 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ADP Identifier CHEBI:456216 (Beilstein: 3783669) help_outline Charge -3 Formula C10H12N5O10P2 InChIKeyhelp_outline XTWYTFMLZFPYCI-KQYNXXCUSA-K SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 841 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,002 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:14673 | RHEA:14674 | RHEA:14675 | RHEA:14676 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
Specific form(s) of this reaction
Publications
-
Purification and characterization of HisP, the ATP-binding subunit of a traffic ATPase (ABC transporter), the histidine permease of Salmonella typhimurium. Solubility, dimerization, and ATPase activity.
Nikaido K., Liu P.Q., Ames G.F.
The nucleotide-binding subunit, HisP, of the histidine permease, a traffic ATPase (ABC transporter), has been purified as a soluble protein and characterized. Addition of a 6-histidine extension (HisP(His6)) allows a rapid and effective metal affinity purification, giving a 30-fold purification wi ... >> More
The nucleotide-binding subunit, HisP, of the histidine permease, a traffic ATPase (ABC transporter), has been purified as a soluble protein and characterized. Addition of a 6-histidine extension (HisP(His6)) allows a rapid and effective metal affinity purification, giving a 30-fold purification with a yield of 50%. HisP(his6) is indistinguishable from underivatized HisP when incorporated into the permease membrane-bound complex, HisQMP2. Purified HisP(his6) has a strong tendency to precipitate; 5 mM ATP and 20% glycerol maintain it in solution at a high protein concentration. HisP(his6) is active as a dimer, binds ATP with a Kd value of 205 microM, and hydrolyzes it at a rate comparable to that of HisQMP2; in contrast to the latter, it does not display cooperativity for ATP. HisP(his6) has been characterized with respect to substrate and inhibitor specificity and various physico-chemical characteristics. Its pH optimum is 7 and it requires a cation for activity, with Co2+ and Mn2+ being more effective than Mg2+ at lower concentrations but inhibitory in the higher concentration range. In contrast to the intact complex, HisP(his6) is not inhibited by vanadate but is inhibited by N-ethylmaleimide. Neither the soluble receptor, HisJ, nor the transport substrate, histidine, has any effect on the activity. << Less
J Biol Chem 272:27745-27752(1997) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Phylogenetic analyses of the ATP-binding constituents of bacterial extracytoplasmic receptor-dependent ABC-type nutrient uptake permeases.
Kuan G., Dassa E., Saurin W., Hofnung M., Saier M.H. Jr.
Thirty-eight ATP-binding cassette (ABC) protein constituents of bacterial extracytoplasmic receptor-dependent nutrient uptake systems, including one homologous chloroplast protein were analysed for sequence conservation and phylogenetic relatedness. The proteins were generally found to cluster in ... >> More
Thirty-eight ATP-binding cassette (ABC) protein constituents of bacterial extracytoplasmic receptor-dependent nutrient uptake systems, including one homologous chloroplast protein were analysed for sequence conservation and phylogenetic relatedness. The proteins were generally found to cluster in accordance with the clustering patterns previously observed for the extracytoplasmic receptors and the transmembrane channel-forming constituents of these permeases. The results suggest that these transport systems evolved from a single primordial system with minimal shuffling of the three dissimilar protein constituents of the systems. << Less
Res Microbiol 146:271-278(1995) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
The Escherichia coli ATP-binding cassette (ABC) proteins.
Linton K.J., Higgins C.F.
The recent completion of the Escherichia coli genome sequence (Blattner et al., 1997) has permitted an analysis of the complement of genomically encoded ATP-binding cassette (ABC) proteins. A total of 79 ABC proteins makes this the largest paralogous family of proteins in E. coli. These 79 protein ... >> More
The recent completion of the Escherichia coli genome sequence (Blattner et al., 1997) has permitted an analysis of the complement of genomically encoded ATP-binding cassette (ABC) proteins. A total of 79 ABC proteins makes this the largest paralogous family of proteins in E. coli. These 79 proteins include 97 ABC domains (as some proteins include more than one ABC domain) and are components of 69 independent functional systems (as many systems involve more than one ABC domain). The ABC domains are often, but not exclusively, the energy-generating domains of multicomponent membrane-bound transporters. Thus, 57 of the 69 systems are ABC transporters, of which 44 are periplasmic-binding protein-dependent uptake systems and 13 are presumed exporters. The genes encoding these ABC transporters occupy almost 5% of the genome. Of the 12 systems that are not obviously transport related, the function of only one, the excision repair protein UvrA, is known. A phylogenetic analysis suggests that the majority of ABC proteins can be assigned to 10 subfamilies. Together with statistical and, importantly, biological evidence, this analysis provides insight into the evolution and function of the ABC proteins. << Less
Mol. Microbiol. 28:5-13(1998) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Distribution of a sub-class of bacterial ABC polar amino acid transporter and identification of an N-terminal region involved in solute specificity.
Walshaw D.L., Lowthorpe S., East A., Poole P.S.
A new sub-class of binding protein-dependent transporter with specificity for a broad range of polar amino acids has been identified by sequence comparison, in Rhizobium leguminosarum, Rhodobacter capsulatus, Escherichia coli and Pseudomonas fluorescens. Southern blotting and PCR analysis has show ... >> More
A new sub-class of binding protein-dependent transporter with specificity for a broad range of polar amino acids has been identified by sequence comparison, in Rhizobium leguminosarum, Rhodobacter capsulatus, Escherichia coli and Pseudomonas fluorescens. Southern blotting and PCR analysis has shown that transporters from this new sub-class are widely distributed in Gram-negative bacteria, including, in addition to the above, Citrobacter freundii, Erwinia carotovorum and Rhizobium meliloti. ABC transporters of polar amino acids can be divided into two groups: those with narrow solute specificity and the newly identified sub-class with broad solute specificity. The binding and inner membrane proteins from transporters with a broad solute specificity are larger by approximately 30% than those with a narrow solute specificity. Multiple alignment of the inner membrane proteins from all sequenced polar amino acid transporters indicates there is an N-terminal conserved region that may be involved in solute specificity. A conserved arginine or lysine at residue 30 of this region is changed to glutamate in arginine transporters. Residue 53 also has a strong correlation with the charge on the transported solute, with basic amino acid transporters replacing an aliphatic amino acid at this position with a negatively charged amino acid. The general amino acid permease from R. leguminosarum, which will transport aliphatic as well as basic and acidic amino acids, juxtaposes two prolines at residues 52 and 53 of the N-terminal conserved region. << Less
-
Molecular phylogeny as a basis for the classification of transport proteins from bacteria, archaea and eukarya.
Saier M.H. Jr.
Although enzymes catalyzing chemical reactions have long been classified according to the system developed by the Enzyme Commission (EC), no comparable system has been developed or proposed for transport proteins catalyzing transmembrane vectorial reactions. We here propose a comprehensive system, ... >> More
Although enzymes catalyzing chemical reactions have long been classified according to the system developed by the Enzyme Commission (EC), no comparable system has been developed or proposed for transport proteins catalyzing transmembrane vectorial reactions. We here propose a comprehensive system, designated the Transport Commission (TC) system, based both on function and phylogeny. The TC system initially categorizes permeases according to mode of transport and energy coupling mechanism, and each category is assigned a one-component TC number (W). The secondary level of classification corresponds to the phylogenetic family (or superfamily) to which a particular permease is assigned, and each family is assigned a two-component TC number (W.X). The third level of classification refers to the phylogenetic cluster within a family (or the family within a superfamily) to which the permease belongs, and each cluster receives a three-component TC number (W.X.Y). Finally, the last level of categorization is based on substrate specificity and polarity of transport, and each entry is assigned a four component TC number (W.X.Y.Z). This system is based on the observation that mode of transport and energy coupling mechanism are fundamental properties of transport systems that very seldom transcend familial lines, but substrate specificity, being readily alterable by point mutations, is a superficial characteristic that often transcends familial lines. The proposed system has the potential to include all known permeases for which sequence data are available and has the flexibility to accommodate the multitude of permeases likely to be revealed by future genome sequencing and biochemical analysis. Major conclusions resulting from our classification efforts are described. The classification system, which will be continuously updated, is available on our World Wide Web site (http:/(/)www-biology.ucsd.edu/ approximately msaier/transport/titlepage.html). << Less
Adv Microb Physiol 40:81-136(1998) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.