Enzymes
UniProtKB help_outline | 1 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
Nω-α-(ADP-D-ribosyl)-L-arginyl-[dinitrogen reductase]
Identifier
RHEA-COMP:10791
Reactive part
help_outline
- Name help_outline Nω-(ADP-α-D-ribosyl)-L-arginine residue Identifier CHEBI:83960 Charge -1 Formula C21H32N9O14P2 SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H](NC(=[NH2+])NCCC[C@H](N-*)C(-*)=O)[C@H](O)[C@@H]2O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ADP-D-ribose Identifier CHEBI:57967 Charge -2 Formula C15H21N5O14P2 InChIKeyhelp_outline SRNWOUGRCWSEMX-TYASJMOZSA-L SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2OC(O)[C@H](O)[C@@H]2O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 22 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
L-arginyl-[dinitrogen reductase]
Identifier
RHEA-COMP:10789
Reactive part
help_outline
- Name help_outline L-arginine residue Identifier CHEBI:29965 Charge 1 Formula C6H13N4O SMILEShelp_outline O=C(*)[C@@H](N*)CCCNC(=[NH2+])N 2D coordinates Mol file for the small molecule Search links Involved in 29 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:14493 | RHEA:14494 | RHEA:14495 | RHEA:14496 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Mechanism of ADP-ribosylation removal revealed by the structure and ligand complexes of the dimanganese mono-ADP-ribosylhydrolase DraG.
Berthold C.L., Wang H., Nordlund S., Hogbom M.
ADP-ribosylation is a ubiquitous regulatory posttranslational modification involved in numerous key processes such as DNA repair, transcription, cell differentiation, apoptosis, and the pathogenic mechanism of certain bacterial toxins. Despite the importance of this reversible process, very little ... >> More
ADP-ribosylation is a ubiquitous regulatory posttranslational modification involved in numerous key processes such as DNA repair, transcription, cell differentiation, apoptosis, and the pathogenic mechanism of certain bacterial toxins. Despite the importance of this reversible process, very little is known about the structure and mechanism of the hydrolases that catalyze removal of the ADP-ribose moiety. In the phototrophic bacterium Rhodospirillum rubrum, dinitrogenase reductase-activating glycohydrolase (DraG), a dimanganese enzyme that reversibly associates with the cell membrane, is a key player in the regulation of nitrogenase activity. DraG has long served as a model protein for ADP-ribosylhydrolases. Here, we present the crystal structure of DraG in the holo and ADP-ribose bound forms. We also present the structure of a reaction intermediate analogue and propose a detailed catalytic mechanism for protein de-ADP-ribosylation involving ring opening of the substrate ribose. In addition, the particular manganese coordination in DraG suggests a rationale for the enzyme's preference for manganese over magnesium, although not requiring a redox active metal for the reaction. << Less
Proc. Natl. Acad. Sci. U.S.A. 106:14247-14252(2009) [PubMed] [EuropePMC]
-
Genes coding for the reversible ADP-ribosylation system of dinitrogenase reductase from Rhodospirillum rubrum.
Fitzmaurice W.P., Saari L.L., Lowery R.G., Ludden P.W., Roberts G.P.
Nitrogen fixation activity in the photosynthetic bacterium Rhodospirillum rubrum is controlled by the reversible ADP-ribosylation of the dinitrogenase reductase component of the nitrogenase enzyme complex. This report describes the cloning and characterization of the genes encoding the ADP-ribosyl ... >> More
Nitrogen fixation activity in the photosynthetic bacterium Rhodospirillum rubrum is controlled by the reversible ADP-ribosylation of the dinitrogenase reductase component of the nitrogenase enzyme complex. This report describes the cloning and characterization of the genes encoding the ADP-ribosyltransferase (draT) and the ADP-ribosylglycohydrolase (draG) involved in this regulation. These genes are shown to be contiguous on the R. rubrum chromosome and highly linked to the nifHDK genes. Sequence analysis revealed the use of TTG as the initiation codon of the draT gene as well as a potential open reading frame immediately downstream of draG. The mono-ADP-ribosylation system in R. rubrum is the first in which both the target protein and modifying enzymes as well as their structural genes have been isolated, making it the model system of choice for analysis of this post-translational regulatory mechanism. << Less
Mol. Gen. Genet. 218:340-347(1989) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Crystal structure of dinitrogenase reductase-activating glycohydrolase (DraG) reveals conservation in the ADP-ribosylhydrolase fold and specific features in the ADP-ribose-binding pocket.
Li X.D., Huergo L.F., Gasperina A., Pedrosa F.O., Merrick M., Winkler F.K.
Protein-reversible ADP-ribosylation is emerging as an important post-translational modification used to control enzymatic and protein activity in different biological systems. This modification regulates nitrogenase activity in several nitrogen-fixing bacterial species. ADP-ribosylation is catalyz ... >> More
Protein-reversible ADP-ribosylation is emerging as an important post-translational modification used to control enzymatic and protein activity in different biological systems. This modification regulates nitrogenase activity in several nitrogen-fixing bacterial species. ADP-ribosylation is catalyzed by ADP-ribosyltransferases and is reversed by ADP-ribosylhydrolases. The structure of the ADP-ribosylhydrolase that acts on Azospirillum brasilense nitrogenase (dinitrogenase reductase-activating glycohydrolase, DraG) has been solved at a resolution of 2.5 A. This bacterial member of the ADP-ribosylhydrolase family acts specifically towards a mono-ADP-ribosylated substrate. The protein shows an all-alpha-helix structure with two magnesium ions located in the active site. Comparison of the DraG structure with orthologues deposited in the Protein Data Bank from Archaea and mammals indicates that the ADP-ribosylhydrolase fold is conserved in all domains of life. Modeling of the binding of the substrate ADP-ribosyl moiety to DraG is in excellent agreement with biochemical data. << Less
-
N-glycohydrolysis of adenosine diphosphoribosyl arginine linkages by dinitrogenase reductase activating glycohydrolase (activating enzyme) from Rhodospirillum rubrum.
Pope M.R., Saari L.L., Ludden P.W.
The reaction catalyzed by the activating enzyme for dinitrogenase reductase from Rhodospirillum rubrum has been studied using an ADP-ribosyl hexapeptide, obtained from proteolysis of inactive dinitrogenase reductase, and synthetic analogs such as N alpha-dansyl-N omega-ADP-ribosylarginine methyl e ... >> More
The reaction catalyzed by the activating enzyme for dinitrogenase reductase from Rhodospirillum rubrum has been studied using an ADP-ribosyl hexapeptide, obtained from proteolysis of inactive dinitrogenase reductase, and synthetic analogs such as N alpha-dansyl-N omega-ADP-ribosylarginine methyl ester. The activating enzyme catalyzed N-glycohydrolysis of the ribosyl-guanidinium linkage releasing ADP-ribose and regenerating an unmodified arginyl guanidinium group. Optimal glycohydrolysis of the low molecular weight substrates occurred at pH 6.6 and required 1 mM MnCl2, but did not require ATP. The ADP-ribosyl hexapeptide (Km 11 microM), N alpha-dansyl-N omega-ADP-ribosylarginine methyl ester (Km 12 microM), N alpha-dansyl-N omega-ADP-ribosylarginine (Km 12 microM), N alpha-dansyl-N omega-1,N6-etheno-ADP-ribosylarginine methyl ester (Km 11 microM), and N alpha-dansyl-N omega-GDP-ribosylarginine methyl ester (Km 11 microM) were comparable substrates. N omega-ADP-ribosylarginine (Km 2 mM) was a poor substrate, and the activating enzyme did not catalyze N-glycohydrolysis of N alpha-dansyl-N omega-5'-phosphoribosylarginine methyl ester or N alpha-dansyl-N omega-ribosylarginine methyl ester. 13C NMR of N alpha-tosyl-N omega-ADP-ribosylarginine methyl ester established that the activating enzyme specifically hydrolyzed the alpha-ribosyl-guanidinium linkage. The beta-linked anomer was hydrolyzed only after anomerization to the alpha configuration. We recommend [arginine(N omega-ADP-alpha-ribose)]dinitrogenase reductase N-glycohydrolase (dinitrogenase reductase activating) and dinitrogenase reductase activating glycohydrolase as the systematic and working names for the activating enzyme. << Less
J Biol Chem 261:10104-10111(1986) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Metabolic regulation of nitrogen fixation in Rhodospirillum rubrum.
Wang H., Noren A.
Nitrogenase activity in Rhodospirillum rubrum is post-translationally regulated by DRAG (dinitrogenase reductase glycohydrolase) and DRAT (dinitrogenase reductase ADP-ribosylation transferase). When a sudden increase in fixed nitrogen concentration or energy depletion is sensed by the cells, DRAG ... >> More
Nitrogenase activity in Rhodospirillum rubrum is post-translationally regulated by DRAG (dinitrogenase reductase glycohydrolase) and DRAT (dinitrogenase reductase ADP-ribosylation transferase). When a sudden increase in fixed nitrogen concentration or energy depletion is sensed by the cells, DRAG is inactivated and DRAT activated. We propose that the regulation of DRAG is dependent on its location in the cell and the presence of an ammonium-sensing protein. << Less