Enzymes
UniProtKB help_outline | 33,079 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline a 1,2-diacyl-sn-glycero-3-phosphocholine Identifier CHEBI:57643 Charge 0 Formula C10H18NO8PR2 SMILEShelp_outline [C@](COC(=O)*)(OC(=O)*)([H])COP(OCC[N+](C)(C)C)([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 324 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a 1,2-diacyl-sn-glycero-3-phosphate Identifier CHEBI:58608 Charge -2 Formula C5H5O8PR2 SMILEShelp_outline [O-]P([O-])(=O)OC[C@@H](COC([*])=O)OC([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 139 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline choline Identifier CHEBI:15354 (Beilstein: 1736748; CAS: 62-49-7) help_outline Charge 1 Formula C5H14NO InChIKeyhelp_outline OEYIOHPDSNJKLS-UHFFFAOYSA-N SMILEShelp_outline C[N+](C)(C)CCO 2D coordinates Mol file for the small molecule Search links Involved in 56 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:14445 | RHEA:14446 | RHEA:14447 | RHEA:14448 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
Specific form(s) of this reaction
Publications
-
Phospholipase D.
Exton J.H.
Phospholipase D is an ubiquitous enzyme that hydrolyzes phosphatidylcholine to phosphatidic acid and choline. Its cellular actions are related to the production of phosphatidic acid and include alterations to cell growth, shape, and secretion. There are two mammalian phospholipase D genes whose pr ... >> More
Phospholipase D is an ubiquitous enzyme that hydrolyzes phosphatidylcholine to phosphatidic acid and choline. Its cellular actions are related to the production of phosphatidic acid and include alterations to cell growth, shape, and secretion. There are two mammalian phospholipase D genes whose products (PLD1 and PLD2) are alternatively spliced. Both forms have two highly conserved HKD motifs that are essential for catalysis and dimerization. PLD1 is regulated in vitro and in vivo by protein kinase C and small GTPases of the Rho and ARF families, whereas PLD2 shows a higher basal activity with little or no response to these proteins. The cellular locations and specific functions of the two PLD isoforms remain to be established. << Less
-
Cloning, overexpression, and characterization of a bacterial Ca2+-dependent phospholipase D.
Yang H., Roberts M.F.
Phospholipase D (PLD), an important enzyme involved in signal transduction in mammals, is also secreted by many microorganisms. A highly conserved HKD motif has been identified in most PLD homologs in the PLD superfamily. However, the Ca(2+)-dependent PLD from Streptomyces chromofuscus exhibits li ... >> More
Phospholipase D (PLD), an important enzyme involved in signal transduction in mammals, is also secreted by many microorganisms. A highly conserved HKD motif has been identified in most PLD homologs in the PLD superfamily. However, the Ca(2+)-dependent PLD from Streptomyces chromofuscus exhibits little homology to other PLDs. We have cloned (using DNA isolated from the ATCC type strain), overexpressed in Escherichia coli (two expression systems, pET-23a(+) and pTYB11), and purified the S. chromofuscus PLD. Based on attempts at sequence alignment with other known Ca(2+)-independent PLD enzymes from Streptomyces species, we mutated five histidine residues (His72, His171, His187, His200, His226) that could be part of variants of an HKD motif. Only H187A and H200A showed dramatically reduced activity. However, mutation of these histidine residues to alanine also significantly altered the secondary structure of PLD. Asparagine replacements at these positions yielded enzymes with structure and activity similar to the recombinant wild-type PLD. The extent of phosphatidic acid (PA) activation of PC hydrolysis by the recombinant PLD enzymes differed in magnitude from PLD purified from S. chromofuscus culture medium (a 2-fold activation rather than 4-5-fold). One of the His mutants, H226A, showed a 12-fold enhancement by PA, suggesting this residue is involved in the kinetic activation. Another notable difference of this bacterial PLD from others is that it has a single cysteine (Cys123); other Streptomyces Ca(2+)-independent PLDs have eight Cys involved in intramolecular disulfide bonds. Both C123A and C123S, with secondary structure and stability similar to recombinant wild-type PLD, exhibited specific activity reduced by 10(-5) and 10(-4). The Cys mutants still bound Ca(2+), so that it is likely that this residue is part of the active site of the Ca(2+)-dependent PLD. This would suggest that S. chromofuscus PLD is a member of a new class of PLD enzymes. << Less