Enzymes
UniProtKB help_outline | 1 proteins |
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
-
Namehelp_outline
N-terminal L-alanyl-[cypemycin]
Identifier
RHEA-COMP:9849
Reactive part
help_outline
- Name help_outline N-terminal L-alanine residue Identifier CHEBI:64718 Charge 1 Formula C3H7NO SMILEShelp_outline C(*)(=O)[C@@H]([NH3+])C 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-methionine Identifier CHEBI:59789 Charge 1 Formula C15H23N6O5S InChIKeyhelp_outline MEFKEPWMEQBLKI-AIRLBKTGSA-O SMILEShelp_outline C[S+](CC[C@H]([NH3+])C([O-])=O)C[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 904 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
N-terminal N,N-dimethyl-L-alanyl-[cypemycin]
Identifier
RHEA-COMP:9850
Reactive part
help_outline
- Name help_outline N,N-dimethyl-L-alanyl group Identifier CHEBI:77037 Charge 0 Formula C5H10NO SMILEShelp_outline C[C@H](N(C)C)C(-*)=O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-homocysteine Identifier CHEBI:57856 Charge 0 Formula C14H20N6O5S InChIKeyhelp_outline ZJUKTBDSGOFHSH-WFMPWKQPSA-N SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](CSCC[C@H]([NH3+])C([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 827 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:14393 | RHEA:14394 | RHEA:14395 | RHEA:14396 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
MetaCyc help_outline |
Publications
-
Catalytic promiscuity of a bacterial alpha-N-methyltransferase.
Zhang Q., van der Donk W.A.
The posttranslational methylation of N-terminal α-amino groups (α-N-methylation) is a ubiquitous reaction found in all domains of life. Although this modification usually occurs on protein substrates, recent studies have shown that it also takes place on ribosomally synthesized natural products. H ... >> More
The posttranslational methylation of N-terminal α-amino groups (α-N-methylation) is a ubiquitous reaction found in all domains of life. Although this modification usually occurs on protein substrates, recent studies have shown that it also takes place on ribosomally synthesized natural products. Here we report an investigation of the bacterial α-N-methyltransferase CypM involved in the biosynthesis of the peptide antibiotic cypemycin. We demonstrate that CypM has low substrate selectivity and methylates a variety of oligopeptides, cyclic peptides such as nisin and haloduracin, and the ε-amino group of lysine. Hence it may have potential for enzyme engineering and combinatorial biosynthesis. Bayesian phylogenetic inference of bacterial α-N-methyltransferases suggests that they have not evolved as a specific group based on the chemical transformations they catalyze, but that they have been acquired from various other methyltransferase classes during evolution. << Less
-
Genome mining and genetic analysis of cypemycin biosynthesis reveal an unusual class of posttranslationally modified peptides.
Claesen J., Bibb M.
Posttranslational modification of amino acids confers a range of structural features and activities on ribosomally synthesized peptides, many of which have potent antimicrobial or other biological activities. Cypemycin is an extensively modified linear peptide produced by Streptomyces sp. OH-4156 ... >> More
Posttranslational modification of amino acids confers a range of structural features and activities on ribosomally synthesized peptides, many of which have potent antimicrobial or other biological activities. Cypemycin is an extensively modified linear peptide produced by Streptomyces sp. OH-4156 with potent in vitro activity against mouse leukemia cells. Cypemycin does not contain lanthionine bridges but exhibits some of the structural features of lantibiotics, notably dehydrated threonines (dehydrobutyrines) and a C-terminal S-[(Z)-2-aminovinyl]-D-cysteine. Consequently it was classified as a member of the lantibiotic family of posttranslationally modified peptides. Cypemycin also possesses two L-allo-isoleucine residues and an N-terminal N,N-dimethylalanine, both unique amino acid modifications. We identified and heterologously expressed the cypemycin biosynthetic gene cluster and performed a mutational analysis of each individual gene. We show that even the previously described modifications are carried out by unusual enzymes or via a modification pathway unrelated to lantibiotic biosynthesis. Bioinformatic analysis revealed the widespread occurrence of cypemycin-like gene clusters within the bacterial kingdom and in the Archaea. Cypemycin is the founding member of an unusual class of posttranslationally modified ribosomally synthesized peptides, the linaridins. << Less
Proc. Natl. Acad. Sci. U.S.A. 107:16297-16302(2010) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.