Enzymes
UniProtKB help_outline | 6 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline 2-oxoglutarate Identifier CHEBI:16810 (Beilstein: 3664503; CAS: 64-15-3) help_outline Charge -2 Formula C5H4O5 InChIKeyhelp_outline KPGXRSRHYNQIFN-UHFFFAOYSA-L SMILEShelp_outline [O-]C(=O)CCC(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 425 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-tryptophan Identifier CHEBI:57912 Charge 0 Formula C11H12N2O2 InChIKeyhelp_outline QIVBCDIJIAJPQS-VIFPVBQESA-N SMILEShelp_outline [NH3+][C@@H](Cc1c[nH]c2ccccc12)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 56 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline indole-3-pyruvate Identifier CHEBI:17640 Charge -1 Formula C11H8NO3 InChIKeyhelp_outline RSTKLPZEZYGQPY-UHFFFAOYSA-M SMILEShelp_outline [O-]C(=O)C(=O)Cc1c[nH]c2ccccc12 2D coordinates Mol file for the small molecule Search links Involved in 16 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-glutamate Identifier CHEBI:29985 (CAS: 11070-68-1) help_outline Charge -1 Formula C5H8NO4 InChIKeyhelp_outline WHUUTDBJXJRKMK-VKHMYHEASA-M SMILEShelp_outline [NH3+][C@@H](CCC([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 244 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:14093 | RHEA:14094 | RHEA:14095 | RHEA:14096 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
The main auxin biosynthesis pathway in Arabidopsis.
Mashiguchi K., Tanaka K., Sakai T., Sugawara S., Kawaide H., Natsume M., Hanada A., Yaeno T., Shirasu K., Yao H., McSteen P., Zhao Y., Hayashi K., Kamiya Y., Kasahara H.
The phytohormone auxin plays critical roles in the regulation of plant growth and development. Indole-3-acetic acid (IAA) has been recognized as the major auxin for more than 70 y. Although several pathways have been proposed, how auxin is synthesized in plants is still unclear. Previous genetic a ... >> More
The phytohormone auxin plays critical roles in the regulation of plant growth and development. Indole-3-acetic acid (IAA) has been recognized as the major auxin for more than 70 y. Although several pathways have been proposed, how auxin is synthesized in plants is still unclear. Previous genetic and enzymatic studies demonstrated that both TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA) and YUCCA (YUC) flavin monooxygenase-like proteins are required for biosynthesis of IAA during plant development, but these enzymes were placed in two independent pathways. In this article, we demonstrate that the TAA family produces indole-3-pyruvic acid (IPA) and the YUC family functions in the conversion of IPA to IAA in Arabidopsis (Arabidopsis thaliana) by a quantification method of IPA using liquid chromatography-electrospray ionization-tandem MS. We further show that YUC protein expressed in Escherichia coli directly converts IPA to IAA. Indole-3-acetaldehyde is probably not a precursor of IAA in the IPA pathway. Our results indicate that YUC proteins catalyze a rate-limiting step of the IPA pathway, which is the main IAA biosynthesis pathway in Arabidopsis. << Less
Proc. Natl. Acad. Sci. U.S.A. 108:18512-18517(2011) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Characterization of aromatic aminotransferases from the hyperthermophilic archaeon Thermococcus litoralis.
Andreotti G., Cubellis M.V., Nitti G., Sannia G., Mai X., Marino G., Adams M.W.
The hyperthermophilic archaeon (formerly archaebacterium) Thermococcus litoralis grows at temperatures up to 98 degrees C using peptides and proteins as the sole sources of carbon and nitrogen. Cell-free extracts of the organism contained two distinct types of aromatic aminotransferases (EC 2.6.1. ... >> More
The hyperthermophilic archaeon (formerly archaebacterium) Thermococcus litoralis grows at temperatures up to 98 degrees C using peptides and proteins as the sole sources of carbon and nitrogen. Cell-free extracts of the organism contained two distinct types of aromatic aminotransferases (EC 2.6.1.57) which were separated and purified to electrophoretic homogeneity. Both enzymes are homodimers with subunit masses of approximately 47 kDa and 45 kDa. Using 2-oxoglutarate as the amino acceptor, each catalyzed the pyridoxal-5'-phosphate-dependent transamination of the three aromatic amino acids but showed virtually no activity towards aspartic acid, alanine, valine or isoleucine. From the determination of Km and kcat values using 2-oxoglutarate, phenylalanine, tyrosine and tryptophan as substrates, both enzymes were shown to be highly efficient at transaminating phenylalanine (kcat/Km approximately 400 s-1 mM-1); the 47-kDa enzyme showed more activity towards tyrosine and tryptophan compared to the 45-kDa one. Kinetic analyses indicated a two-step mechanism with a pyridoxamine intermediate. Both enzymes were virtually inactive at 30 degrees C and exhibited maximal activity between 95-100 degrees C. They showed no N-terminal sequence similarity with each other (approximately 30 residues), nor with the complete amino acid sequences of aromatic aminotransferases from Escherichia coli and rat liver. The catalytic properties of the two enzymes are distinct from bacterial aminotransferases, which have broad substrate specificities, but are analogous to two aromatic aminotransferases which play a biosynthetic role in a methanogenic archaeon. In contrast, it is proposed that one or both play a catabolic role in proteolytic T. litoralis in which they generate glutamate and an arylpyruvate. These serve as substrates for glutamate dehydrogenase and indolepyruvate ferredoxin oxidoreductase in a novel pathway for the utilization of aromatic amino acids. << Less
Eur. J. Biochem. 220:543-549(1994) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.