Reaction participants Show >> << Hide
- Name help_outline 2-oxoglutarate Identifier CHEBI:16810 (Beilstein: 3664503; CAS: 64-15-3) help_outline Charge -2 Formula C5H4O5 InChIKeyhelp_outline KPGXRSRHYNQIFN-UHFFFAOYSA-L SMILEShelp_outline [O-]C(=O)CCC(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 425 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline glycine Identifier CHEBI:57305 Charge 0 Formula C2H5NO2 InChIKeyhelp_outline DHMQDGOQFOQNFH-UHFFFAOYSA-N SMILEShelp_outline [NH3+]CC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 142 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline glyoxylate Identifier CHEBI:36655 (Beilstein: 3903641) help_outline Charge -1 Formula C2HO3 InChIKeyhelp_outline HHLFWLYXYJOTON-UHFFFAOYSA-M SMILEShelp_outline [H]C(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 81 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-glutamate Identifier CHEBI:29985 (CAS: 11070-68-1) help_outline Charge -1 Formula C5H8NO4 InChIKeyhelp_outline WHUUTDBJXJRKMK-VKHMYHEASA-M SMILEShelp_outline [NH3+][C@@H](CCC([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 244 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:14089 | RHEA:14090 | RHEA:14091 | RHEA:14092 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Substrate specificity and structure of human aminoadipate aminotransferase/kynurenine aminotransferase II.
Han Q., Cai T., Tagle D.A., Robinson H., Li J.
KAT (kynurenine aminotransferase) II is a primary enzyme in the brain for catalysing the transamination of kynurenine to KYNA (kynurenic acid). KYNA is the only known endogenous antagonist of the N-methyl-D-aspartate receptor. The enzyme also catalyses the transamination of aminoadipate to alpha-o ... >> More
KAT (kynurenine aminotransferase) II is a primary enzyme in the brain for catalysing the transamination of kynurenine to KYNA (kynurenic acid). KYNA is the only known endogenous antagonist of the N-methyl-D-aspartate receptor. The enzyme also catalyses the transamination of aminoadipate to alpha-oxoadipate; therefore it was initially named AADAT (aminoadipate aminotransferase). As an endotoxin, aminoadipate influences various elements of glutamatergic neurotransmission and kills primary astrocytes in the brain. A number of studies dealing with the biochemical and functional characteristics of this enzyme exist in the literature, but a systematic assessment of KAT II addressing its substrate profile and kinetic properties has not been performed. The present study examines the biochemical and structural characterization of a human KAT II/AADAT. Substrate screening of human KAT II revealed that the enzyme has a very broad substrate specificity, is capable of catalysing the transamination of 16 out of 24 tested amino acids and could utilize all 16 tested alpha-oxo acids as amino-group acceptors. Kinetic analysis of human KAT II demonstrated its catalytic efficiency for individual amino-group donors and acceptors, providing information as to its preferred substrate affinity. Structural analysis of the human KAT II complex with alpha-oxoglutaric acid revealed a conformational change of an N-terminal fraction, residues 15-33, that is able to adapt to different substrate sizes, which provides a structural basis for its broad substrate specificity. << Less
Biosci. Rep. 28:205-215(2008) [PubMed] [EuropePMC]
This publication is cited by 26 other entries.
-
Alanine aminotransferase homologs catalyze the glutamate:glyoxylate aminotransferase reaction in peroxisomes of Arabidopsis.
Liepman A.H., Olsen L.J.
Plant peroxisomal glyoxylate aminotransferases play central roles within the photorespiratory pathway. Genes encoding glyoxylate aminotransferases have been isolated from several animals and microbes, but only recently have plant homologs been identified. Three Arabidopsis homologs of alanine (Ala ... >> More
Plant peroxisomal glyoxylate aminotransferases play central roles within the photorespiratory pathway. Genes encoding glyoxylate aminotransferases have been isolated from several animals and microbes, but only recently have plant homologs been identified. Three Arabidopsis homologs of alanine (Ala):glyoxylate aminotransferase 2 (AGT2) contain a putative type 1 peroxisomal targeting signal (PTS1), but the metabolic significance of these AGT2 homologs is unknown. GGT1 and GGT2 are Ala aminotransferase (AlaAT) homologs from Arabidopsis that represent another type of glyoxylate aminotransferase. These proteins are class I aminotransferases, each containing a putative PTS1. GGT1 and GGT2 are members of a small family of AlaATs in Arabidopsis. When expressed as recombinant proteins in Escherichia coli, GGT1 and GGT2 displayed biochemical characteristics very similar to one another, and to the Arabidopsis protein purified from leaves. Four aminotransferase activities were specifically associated with GGT1 and GGT2, using the substrate pairs glutamate (Glu):glyoxylate, Ala:glyoxylate, Glu:pyruvate, and Ala:2-oxoglutarate. GGT1 and GGT2 may have partially redundant functions; transcripts of both genes were detected in many of the same tissues. Although Glu:glyoxylate aminotransferase (GGT) activity has been observed in several locations in different plants and algae, including the cytoplasm and mitochondria, our subcellular fractionation data indicate that GGT activity was exclusively peroxisomal in Arabidopsis. Thus, glyoxylate aminotransferase reactions in plant peroxisomes appear to be catalyzed by at least two distinct types of aminotransferases: an AGT1 homolog with serine:glyoxylate aminotransferase activity (A.H. Liepman, L.J. Olsen [2001] Plant J 25: 487-498), and a pair of closely related, potentially redundant AlaAT homologs with GGT activity. << Less