Reaction participants Show >> << Hide
- Name help_outline (2E)-geranyl diphosphate Identifier CHEBI:58057 (Beilstein: 4549979) help_outline Charge -3 Formula C10H17O7P2 InChIKeyhelp_outline GVVPGTZRZFNKDS-JXMROGBWSA-K SMILEShelp_outline CC(C)=CCC\C(C)=C\COP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 61 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
5-methylaminomethyl-2-thiouridine34 in tRNA
Identifier
RHEA-COMP:10195
Reactive part
help_outline
- Name help_outline 5-methylaminomethyl-2-thiouridine 5'-phosphate residue Identifier CHEBI:74455 Charge 0 Formula C11H16N3O7PS Positionhelp_outline 34 SMILEShelp_outline [C@@H]1(N2C(NC(=O)C(=C2)C[NH2+]C)=S)O[C@H](COP(*)(=O)[O-])[C@H]([C@H]1O)O* 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
5-methylaminomethyl-S-(2E)-geranyl-thiouridine34 in tRNA
Identifier
RHEA-COMP:14654
Reactive part
help_outline
- Name help_outline 5-methylaminomethyl-S-(2E)-geranyl-thiouridine 5'-monophosphate residue Identifier CHEBI:140632 Charge 0 Formula C21H32N3O7PS SMILEShelp_outline [C@@H]1(N2C(=NC(=O)C(=C2)C[NH2+]C)SC/C=C(/CCC=C(C)C)\C)O[C@H](COP(*)(=O)[O-])[C@H]([C@H]1O)O* 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline diphosphate Identifier CHEBI:33019 (Beilstein: 185088) help_outline Charge -3 Formula HO7P2 InChIKeyhelp_outline XPPKVPWEQAFLFU-UHFFFAOYSA-K SMILEShelp_outline OP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,129 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:14085 | RHEA:14086 | RHEA:14087 | RHEA:14088 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
Transfer RNA bound to MnmH protein is enriched with geranylated tRNA--a possible intermediate in its selenation?
Jaeger G., Chen P., Bjoerk G.R.
The wobble nucleoside 5-methylaminomethyl-2-thio-uridine (mnm5s2U) is present in bacterial tRNAs specific for Lys and Glu and 5-carboxymethylaminomethyl-2-thio-uridine (cmnm5s2U) in tRNA specific for Gln. The sulfur of (c)mnm5s2U may be exchanged by selenium (Se)-a reaction catalyzed by the seleno ... >> More
The wobble nucleoside 5-methylaminomethyl-2-thio-uridine (mnm5s2U) is present in bacterial tRNAs specific for Lys and Glu and 5-carboxymethylaminomethyl-2-thio-uridine (cmnm5s2U) in tRNA specific for Gln. The sulfur of (c)mnm5s2U may be exchanged by selenium (Se)-a reaction catalyzed by the selenophosphate-dependent tRNA 2-selenouridine synthase encoded by the mnmH (ybbB, selU, sufY) gene. The MnmH protein has a rhodanese domain containing one catalytic Cys (C97) and a P-loop domain containing a Walker A motif, which is a potential nucleotide binding site. We have earlier isolated a mutant of Salmonella enterica, serovar Typhimurium with an alteration in the rhodanese domain of the MnmH protein (G67E) mediating the formation of modified nucleosides having a geranyl (ge)-group (C10H17-fragment) attached to the s2 group of mnm5s2U and of cmnm5s2U in tRNA. To further characterize the structural requirements to increase the geranylation activity, we here report the analysis of 39 independently isolated mutants catalyzing the formation of mnm5ges2U. All these mutants have amino acid substitutions in the rhodanese domain demonstrating that this domain is pivotal to increase the geranylation activity. The wild type form of MnmH+ also possesses geranyltransferase activity in vitro although only a small amount of the geranyl derivatives of (c)mnm5s2U is detected in vivo. The selenation activity in vivo has an absolute requirement for the catalytic Cys97 in the rhodanese domain whereas the geranylation activity does not. Clearly, MnmH has two distinct enzymatic activities for which the rhodanese domain is pivotal. An intact Walker motif in the P-loop domain is required for the geranylation activity implying that it is the binding site for geranylpyrophosphate (GePP), which is the donor molecule in vitro in the geranyltransfer reaction. Purified MnmH from wild type and from the MnmH(G67E) mutant have bound tRNA, which is enriched with geranylated tRNA. This in conjunction with earlier published data, suggests that this bound geranylated tRNA may be an intermediate in the selenation of the tRNA. << Less
PLoS ONE 11:E0153488-E0153488(2016) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Escherichia coli tRNA 2-selenouridine synthase (SelU) converts S2U-RNA to Se2U-RNA via S-geranylated-intermediate.
Sierant M., Leszczynska G., Sadowska K., Komar P., Radzikowska-Cieciura E., Sochacka E., Nawrot B.
To date the only tRNAs containing nucleosides modified with a selenium (5-carboxymethylaminomethyl-2-selenouridine and 5-methylaminomethyl-2-selenouridine) have been found in bacteria. By using tRNA anticodon-stem-loop fragments containing S2U, Se2U, or geS2U, we found that in vitro tRNA 2-selenou ... >> More
To date the only tRNAs containing nucleosides modified with a selenium (5-carboxymethylaminomethyl-2-selenouridine and 5-methylaminomethyl-2-selenouridine) have been found in bacteria. By using tRNA anticodon-stem-loop fragments containing S2U, Se2U, or geS2U, we found that in vitro tRNA 2-selenouridine synthase (SelU) converts S2U-RNA to Se2U-RNA in a two-step process involving S2U-RNA geranylation (with ppGe) and subsequent selenation of the resulting geS2U-RNA (with SePO<sub>3</sub><sup>3-</sup> ). No 'direct' S2U-RNA→Se2U-RNA replacement is observed in the presence of SelU/SePO<sub>3</sub><sup>3-</sup> only (without ppGe). These results suggest that the in vivo S2U→Se2U and S2U→geS2U transformations in tRNA, so far claimed to be the elementary reactions occurring independently in the same domain of the SelU enzyme, should be considered a combination of two consecutive events - geranylation (S2U→geS2U) and selenation (geS2U→Se2U). << Less
FEBS Lett. 592:2248-2258(2018) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
Comments
RHEA:14085 part of RHEA:42716