Enzymes
UniProtKB help_outline | 1,167 proteins |
Reaction participants Show >> << Hide
- Name help_outline 3-oxopropanoate Identifier CHEBI:33190 Charge -1 Formula C3H3O3 InChIKeyhelp_outline OAKURXIZZOAYBC-UHFFFAOYSA-M SMILEShelp_outline [H]C(=O)CC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 20 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-alanine Identifier CHEBI:57972 Charge 0 Formula C3H7NO2 InChIKeyhelp_outline QNAYBMKLOCPYGJ-REOHCLBHSA-N SMILEShelp_outline C[C@H]([NH3+])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 112 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline β-alanine Identifier CHEBI:57966 Charge 0 Formula C3H7NO2 InChIKeyhelp_outline UCMIRNVEIXFBKS-UHFFFAOYSA-N SMILEShelp_outline [NH3+]CCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 34 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline pyruvate Identifier CHEBI:15361 (Beilstein: 3587721; CAS: 57-60-3) help_outline Charge -1 Formula C3H3O3 InChIKeyhelp_outline LCTONWCANYUPML-UHFFFAOYSA-M SMILEShelp_outline CC(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 215 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:14077 | RHEA:14078 | RHEA:14079 | RHEA:14080 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
Reactome help_outline |
Publications
-
Functional characterization of seven gamma-glutamylpolyamine synthetase genes and the bauRABCD locus for polyamine and beta-alanine utilization in Pseudomonas aeruginosa PAO1.
Yao X., He W., Lu C.D.
Pseudomonas aeruginosa and many other bacteria can utilize biogenic polyamines, including diaminopropane (DAP), putrescine (Put), cadaverine (Cad), and spermidine (Spd), as carbon and/or nitrogen sources. Transcriptome analysis in response to exogenous Put and Spd led to the identification of a li ... >> More
Pseudomonas aeruginosa and many other bacteria can utilize biogenic polyamines, including diaminopropane (DAP), putrescine (Put), cadaverine (Cad), and spermidine (Spd), as carbon and/or nitrogen sources. Transcriptome analysis in response to exogenous Put and Spd led to the identification of a list of genes encoding putative enzymes for the catabolism of polyamines. Among them, pauA1 to pauA6, pauB1 to pauB4, pauC, and pauD1 and pauD2 (polyamine utilization) encode enzymes homologous to Escherichia coli PuuABCD of the γ-glutamylation pathway in converting Put into GABA. A series of unmarked pauA mutants was constructed for growth phenotype analysis. The results revealed that it requires specific combinations of pauA knockouts to abolish utilization of different polyamines and support the importance of γ-glutamylation for polyamine catabolism in P. aeruginosa. Another finding was that the list of Spd-inducible genes overlaps almost completely with that of Put-inducible ones except the pauA3B2 operon and the bauABCD operon (β-alanine utilization). Mutation analysis led to the conclusion that pauA3B2 participate in catabolism of DAP, which is related to the aminopropyl moiety of Spd, and that bauABCD are essential for growth on β-alanine derived from DAP (or Spd) catabolism via the γ-glutamylation pathway. Measurements of the pauA3-lacZ and bauA-lacZ expression indicated that these two promoters were differentially induced by Spd, DAP, and β-alanine but showed no apparent response to Put, Cad, and GABA. Induction of the pauA3 and bauA promoters was abolished in the bauR mutant. The recombinant BauR protein was purified to demonstrate its interactions with the pauA3 and bauA regulatory regions in vitro. In summary, the present study support that the γ-glutamylation pathway for polyamine utilization is evolutionarily conserved in E. coli and Pseudomonas spp. and is further expanded in Pseudomonas to accommodate a more diverse metabolic capacity in this group of microorganisms. << Less
-
Identification of omega-aminotransferase from Caulobacter crescentus and site-directed mutagenesis to broaden substrate specificity.
Hwang B.Y., Ko S.H., Park H.Y., Seo J.H., Lee B.S., Kim B.G.
A putative aminotransferase gene, cc3143 (aptA), from Caulobacter crescentus was screened by bioinformatical tools and overexpressed in E. coli, and the substrate specificity of the aminotransferase was investigated. AptA showed high activity for short-chain beta-amino acids. It showed the highest ... >> More
A putative aminotransferase gene, cc3143 (aptA), from Caulobacter crescentus was screened by bioinformatical tools and overexpressed in E. coli, and the substrate specificity of the aminotransferase was investigated. AptA showed high activity for short-chain beta-amino acids. It showed the highest activity for 3-amino-n-butyric acid. It showed higher activity toward aromatic amines than aliphatic amines. The 3D model of the aminotransferase was constructed by homology modeling using a dialkylglycine decarboxylase PDB ID: 1DGE) as a template. Then, the aminotransferase was rationally redesigned to increase the activity for 3-amino-3-phenylpropionic acid. The mutants N285A and V227G increased the relative activity for 3-amino-3-phenylpropionic acid to 3-amino-n-butyric acid by 11-fold and 3-fold, respectively, over that of wild type. << Less
J. Microbiol. Biotechnol. 18:48-54(2008) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.
-
Properties of the bound coenzyme and subunit structure of omega-amino acid:pyruvate aminotransferase.
Yonaha K., Toyama S., Kagamiyama H.
-
Structural studies of Pseudomonas and Chromobacterium omega-aminotransferases provide insights into their differing substrate specificity.
Sayer C., Isupov M.N., Westlake A., Littlechild J.A.
The crystal structures and inhibitor complexes of two industrially important ω-aminotransferase enzymes from Pseudomonas aeruginosa and Chromobacterium violaceum have been determined in order to understand the differences in their substrate specificity. The two enzymes share 30% sequence identity ... >> More
The crystal structures and inhibitor complexes of two industrially important ω-aminotransferase enzymes from Pseudomonas aeruginosa and Chromobacterium violaceum have been determined in order to understand the differences in their substrate specificity. The two enzymes share 30% sequence identity and use the same amino acceptor, pyruvate; however, the Pseudomonas enzyme shows activity towards the amino donor β-alanine, whilst the Chromobacterium enzyme does not. Both enzymes show activity towards S-α-methylbenzylamine (MBA), with the Chromobacterium enzyme having a broader substrate range. The crystal structure of the P. aeruginosa enzyme has been solved in the holo form and with the inhibitor gabaculine bound. The C. violaceum enzyme has been solved in the apo and holo forms and with gabaculine bound. The structures of the holo forms of both enzymes are quite similar. There is little conformational difference observed between the inhibitor complex and the holoenzyme for the P. aeruginosa aminotransferase. In comparison, the crystal structure of the C. violaceum gabaculine complex shows significant structural rearrangements from the structures of both the apo and holo forms of the enzyme. It appears that the different rigidity of the protein scaffold contributes to the substrate specificity observed for the two ω-aminotransferases. << Less