Reaction participants Show >> << Hide
- Name help_outline 1-carboxyvinyl carboxyphosphonate Identifier CHEBI:57999 Charge -3 Formula C4H2O7P InChIKeyhelp_outline LPUFGTSGSICQBX-UHFFFAOYSA-K SMILEShelp_outline [O-]C(=O)C(=C)OP([O-])(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 3-(hydrohydroxyphosphoryl)pyruvate Identifier CHEBI:58348 Charge -2 Formula C3H3O5P InChIKeyhelp_outline VHAFWRWGHGSZDL-UHFFFAOYSA-L SMILEShelp_outline [H]P([O-])(=O)CC(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CO2 Identifier CHEBI:16526 (CAS: 124-38-9) help_outline Charge 0 Formula CO2 InChIKeyhelp_outline CURLTUGMZLYLDI-UHFFFAOYSA-N SMILEShelp_outline O=C=O 2D coordinates Mol file for the small molecule Search links Involved in 1,006 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:14045 | RHEA:14046 | RHEA:14047 | RHEA:14048 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Carboxyphosphonoenolpyruvate phosphonomutase, a novel enzyme catalyzing C-P bond formation.
Hidaka T., Imai S., Hara O., Anzai H., Murakami T., Nagaoka K., Seto H.
An enzyme catalyzing the formation of an unusual C-P bond that is involved in the biosynthesis of the antibiotic bialaphos (BA) was isolated from the cell extract of a mutant (NP71) of Streptomyces hygroscopicus SF1293. This enzyme, carboxyphosphonoenolpyruvate (CPEP) phosphonomutase, was first id ... >> More
An enzyme catalyzing the formation of an unusual C-P bond that is involved in the biosynthesis of the antibiotic bialaphos (BA) was isolated from the cell extract of a mutant (NP71) of Streptomyces hygroscopicus SF1293. This enzyme, carboxyphosphonoenolpyruvate (CPEP) phosphonomutase, was first identified as a protein lacking in a mutant (NP213) defective in one of the steps in the pathway to BA. The first 30 residues of the amino terminus of this protein were identical to those predicted by the nucleotide sequence of the gene that restored BA production to NP213. The substrate of the enzyme, a P-carboxylated derivative of phosphoenolpyruvate named CPEP, was also isolated from the broth filtrate of NP213 as a new biosynthetic intermediate of BA. CPEP phosphonomutase catalyzes the rearrangement of the carboxyphosphono group of CPEP to form the C-P bond of phosphinopyruvate. << Less
-
Cloning, overexpression and mechanistic studies of carboxyphosphonoenolpyruvate mutase from Streptomyces hygroscopicus.
Pollack S.J., Freeman S., Pompliano D.L., Knowles J.R.
The enzyme carboxyphosphonoenolpyruvate mutase catalyses the formation of one of the two C-P bonds in bialaphos, a potent herbicide isolated from Streptomyces hygroscopicus. The gene encoding the enzyme has been cloned from a subgenomic library from S. hygroscopicus by colony hybridisation using a ... >> More
The enzyme carboxyphosphonoenolpyruvate mutase catalyses the formation of one of the two C-P bonds in bialaphos, a potent herbicide isolated from Streptomyces hygroscopicus. The gene encoding the enzyme has been cloned from a subgenomic library from S. hygroscopicus by colony hybridisation using an exact nucleotide probe. An open reading frame has been identified that encodes a protein of molecular mass 32700 Da, in good agreement with the subunit molecular mass of the carboxyphosphonoenolpyruvate mutase recently isolated from this source [Hidaka, T., Imai, S., Hara, O., Anzai, H., Murakami, T., Nagaoka, K. & Seto, H. (1990) J. Bacteriol. 172, 3066-3072]. The gene shares significant sequence similarity with that of phosphoenolpyruvate mutase, an enzyme that catalyses the related interconversion of phosphoenolpyruvate and phosphonopyruvate. When the carboxyphosphonoenolpyruvate-mutase gene was subcloned into the vector pET11a, the mutase was expressed as about 20% of the total soluble cellular protein in Escherichia coli. The mutase has been purified to homogeneity in three steps in 40% yield. With malate dehydrogenase/NADH, (hydroxyphosphinyl)pyruvate gives (hydroxyphosphinyl)lactate (kcat 164 s-1 and Km 680 microM) and this spectrophotometric assay for the product of the mutase reaction has been employed in the mechanistic studies. The kinetics for the mutase reaction have been evaluated for the substrate, carboxyphosphonoenolpyruvate, and for the putative reaction intermediate carboxyphosphinopyruvate, both of which have been prepared by chemical synthesis. Carboxyphosphonoenolpyruvate is converted to (hydroxyphosphinyl)pyruvate with a kcat of 0.020 s-1 and a Km of 270 microM, and carboxyphosphinopyruvate is converted to (hydroxyphosphinyl)pyruvate with a kcat of 7.6 x 10(-4) s-1 and a Km of 2.2 microM. Although the exogenously added intermediate is not kinetically competent, these results suggest that the mechanism for the mutase reaction involves an initial rearrangement to the intermediate carboxyphosphinopyruvate, followed by decarboxylation to yield the product (hydroxyphosphinyl)pyruvate. << Less